期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
自适应匹配追踪图像去噪算法 被引量:4
1
作者 李桂会 李晋江 范辉 《计算机科学》 CSCD 北大核心 2020年第1期176-185,共10页
针对目前的稀疏去噪算法分解效率低、去噪效果不理想的问题,提出了一种基于自适应匹配追踪的图像去噪算法。该算法首先通过自适应匹配追踪算法求解稀疏系数,然后利用K奇异值分解算法将字典训练成能够有效反映图像结构特征的自适应字典,... 针对目前的稀疏去噪算法分解效率低、去噪效果不理想的问题,提出了一种基于自适应匹配追踪的图像去噪算法。该算法首先通过自适应匹配追踪算法求解稀疏系数,然后利用K奇异值分解算法将字典训练成能够有效反映图像结构特征的自适应字典,最后将稀疏系数与自适应字典相结合来重构图像。在重构过程中,将噪声对应的系数去除,最终达到去噪的效果。算法引入Spike-Slab先验来引导稀疏系数矩阵的稀疏性,并利用两个权重矩阵促使去噪模型更加真实。鉴于字典在稀疏算法中的重要性,将自适应字典与DCT冗余字典、Global字典进行比较。实验结果显示,选择自适应字典的去噪结果比传统字典在峰值信噪比上高出约4.5 dB;与目前6种主流的稀疏去噪方法相比,文中提出的方法在3种评价指标上均有不同程度的提高,其中峰值信噪比平均提高了约0.76~6.24 dB,特征相似度平均提高了约0.012~0.082,结构相似性平均提高了约0.015~0.108。对图像去噪算法进行定性的评价,结果显示所提算法保留了更多的有用信息,视觉效果最佳。实验充分证明了自适应匹配追踪图像去噪算法对图像去噪的有效性和鲁棒性。 展开更多
关键词 图像去噪 稀疏表示 自适应匹配追踪 K奇异值分解 spike-slab先验
下载PDF
一种基于非参数贝叶斯理论的语音增强算法
2
作者 吴佳雯 刘沁婷 +2 位作者 曾德炉 丁兴号 李琳 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期423-428,共6页
提出一种基于非参数贝叶斯理论的语音增强算法,在稀疏表示的框架下,把字典学习、稀疏系数表示和噪声方差估计融合成一个贝叶斯后验估计的过程,并利用Spike-Slab先验加强稀疏性.首先,将带噪语音分解为干净语音、高斯噪声和残余噪声3个子... 提出一种基于非参数贝叶斯理论的语音增强算法,在稀疏表示的框架下,把字典学习、稀疏系数表示和噪声方差估计融合成一个贝叶斯后验估计的过程,并利用Spike-Slab先验加强稀疏性.首先,将带噪语音分解为干净语音、高斯噪声和残余噪声3个子信号,分别对该3种子信号采用不同的先验概率模型表达,接着采用马尔科夫链-蒙特卡洛算法计算出3个模型中每个参数对应的后验概率,最后基于稀疏表示的框架重构出干净语音.实验数据使用NOIZEUS语音库,采用PESQ和SegSNR作为质量评价指标,分别在信噪比为0,5和10dB的高斯白噪声、火车噪声和街道噪声上验证了其可行性,并与多种常用语音增强方法进行对比,发现其在低信噪比非平稳噪声情况下的增强效果更为理想. 展开更多
关键词 稀疏表示 非参数贝叶斯 spike-slab先验 自适应字典 语音增强
下载PDF
基于spike-and-slab先验的贝叶斯时间序列模型
3
作者 郭晨蕾 李东喜 《计算机科学》 CSCD 北大核心 2023年第S02期644-649,共6页
贝叶斯方法通过引入先验信息并结合似然的方法进行参数估计和变量选择,使模型估计和预测结果更为精确。在贝叶斯框架下考虑时间序列之间的相关性,将偏自相关系数融合先验信息,提出基于spike-and-slab先验的贝叶斯层次时间序列模型(Spike... 贝叶斯方法通过引入先验信息并结合似然的方法进行参数估计和变量选择,使模型估计和预测结果更为精确。在贝叶斯框架下考虑时间序列之间的相关性,将偏自相关系数融合先验信息,提出基于spike-and-slab先验的贝叶斯层次时间序列模型(Spike-and-slab Prior with Partial Autocorrelation Coefficients,SS-PAC)。SS-PAC模型采用spike-and-slab先验并结合偏自相关系数,实现时间序列滞后阶数的选择、参数估计和预测。基于模拟数据和真实数据的实证研究表明,该模型相较于以往模型在变量选择和预测结果上表现更优。 展开更多
关键词 时间序列预测 spike-and-slab先验 贝叶斯方法 偏自相关系数 变量选择
下载PDF
基于spike-and-slab先验分布的贝叶斯变量选择方法 被引量:3
4
作者 张宪友 李东喜 《山东大学学报(理学版)》 CAS CSCD 北大核心 2021年第12期84-93,共10页
针对超高维数据,提出一种基于spike-and-slab先验分布的超高维线性回归模型的贝叶斯变量选择方法。该方法继承了弹性网方法和EM算法的优点,以较快的收敛速度来获得稀疏的预测模型。特别地,针对系数的spike-and-slab先验分布设置上,该方... 针对超高维数据,提出一种基于spike-and-slab先验分布的超高维线性回归模型的贝叶斯变量选择方法。该方法继承了弹性网方法和EM算法的优点,以较快的收敛速度来获得稀疏的预测模型。特别地,针对系数的spike-and-slab先验分布设置上,该方法允许系数从不同坐标借力、自动适应已知数据的稀疏信息以及进行多重调整。通过与常用方法的比较,证明了该方法的准确性和有效性。 展开更多
关键词 变量选择 超高维 spike-and-slab先验分布 弹性网 稀疏模型
原文传递
贝叶斯分位数回归组间组内变量选择及其应用
5
作者 冯俊丰 赵为华 《统计与决策》 北大核心 2023年第1期50-54,共5页
文章利用贝叶斯方法研究分位数回归的组间和组内双变量选择问题。基于偏态拉普拉斯分布和贝叶斯统计推断方法,结合组间和组内系数的Spike-and-Slab先验分布,提出了分位数回归的贝叶斯双层变量选择方法,并给出易于实施的Gibbs后验抽样算... 文章利用贝叶斯方法研究分位数回归的组间和组内双变量选择问题。基于偏态拉普拉斯分布和贝叶斯统计推断方法,结合组间和组内系数的Spike-and-Slab先验分布,提出了分位数回归的贝叶斯双层变量选择方法,并给出易于实施的Gibbs后验抽样算法。通过大量数值模拟和实证分析验证了所提变量选择方法的有效性。 展开更多
关键词 分位数回归 双层变量选择 spike-and-slab先验分布 Gibbs后验抽样
下载PDF
比例数据基于Tobit分位数回归模型的贝叶斯变量选择 被引量:1
6
作者 赵为华 王玲 +1 位作者 程喆 张日权 《中国管理科学》 CSSCI CSCD 北大核心 2022年第4期63-73,共11页
针对家庭商业健康保险参保比例在[0,1]闭区间上取值的特点,本文基于Tobit模型给出了比例响应数据的贝叶斯分位数回归建模方法。通过引入回归系数的“Spike-and-slab”先验分布,应用EM算法我们提出了基于门限规则的贝叶斯变量选择方法。... 针对家庭商业健康保险参保比例在[0,1]闭区间上取值的特点,本文基于Tobit模型给出了比例响应数据的贝叶斯分位数回归建模方法。通过引入回归系数的“Spike-and-slab”先验分布,应用EM算法我们提出了基于门限规则的贝叶斯变量选择方法。大量数值模拟研究验证了所提的贝叶斯变量选择方法的有效性,且具有易操作、计算量小等优点。最后,将此方法应用到家庭商业健康保险数据的实证分析,研究不同分位数水平下家庭健康保险参保比例的影响因素,得到了许多有意义的研究结果。 展开更多
关键词 比例数据 Tobit分位数回归 贝叶斯变量选择 spike-and-slab先验 EM算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部