期刊文献+

基于spike-and-slab先验分布的贝叶斯变量选择方法 被引量:3

A Bayesian approach for variable selection using spike-and-slab prior distribution
原文传递
导出
摘要 针对超高维数据,提出一种基于spike-and-slab先验分布的超高维线性回归模型的贝叶斯变量选择方法。该方法继承了弹性网方法和EM算法的优点,以较快的收敛速度来获得稀疏的预测模型。特别地,针对系数的spike-and-slab先验分布设置上,该方法允许系数从不同坐标借力、自动适应已知数据的稀疏信息以及进行多重调整。通过与常用方法的比较,证明了该方法的准确性和有效性。 For ultra-high dimensional data, a Bayesian approach using a novel spike-and-slab prior for variable selection in high-dimensional linear regression models is presented. The proposed method aims to inherit the advantages of the elastic net and the EM algorithm to obtain sparse prediction models with faster convergence speed. Furthermore, a spike-and-slab setting of coefficients which allows for borrowing strength across coordinates, adjust to data sparsity information and exert multiplicity adjustment is proposed. Finally, the accuracy and efficiency of the proposed method are demonstrated via comparisons and analyses with common methods.
作者 张宪友 李东喜 ZHANG Xian-you;LI Dong-xi(College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2021年第12期84-93,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11571009) 山西省应用基础研究计划资助项目(201901D111086)。
关键词 变量选择 超高维 spike-and-slab先验分布 弹性网 稀疏模型 variable selection high dimensional spike-and-slab prior distribution elastic net sparse model
  • 相关文献

参考文献2

二级参考文献53

  • 1Fan J,Lv J.A selective review of variable selection in high dimensional feature space[J].Statistica Sinica,2010,20:101-148. 被引量:1
  • 2Blum A,Langley P.Selection of relevant features and examples in machine learning[J].Artificial Intelligence,1997,(1-2):245-271. 被引量:1
  • 3Kohavi R,John G.Wrappers for feature selection[J].Artificial Intelligence,1997,(1-2):273-324. 被引量:1
  • 4Fan J,Li R.Variable selection via nonconcave penalized likelihood and its oracle properties[J].J.Amer.Statist.Assoc,2001,96:1348-1360. 被引量:1
  • 5Breiman L.Heuristics of instability and stabilization in model selection[J].Annals of Statistics,1996,24:2350-2383. 被引量:1
  • 6Breiman L.Better subset regression using the nonnegative garrote[J].Technometrics,1995,37:373-384. 被引量:1
  • 7Tibshirani R.Regression shrinkage and selection via the Lasso[J].Journal of Royal Statistical Society(Series B),1996,58:267-288. 被引量:1
  • 8Frank I E,Friedman J H.A statistical view of some chemometrics regression tools(with discussion)[J].Technometrics,1993,35:109-148. 被引量:1
  • 9Zhang C H.Penalized linear unbiased selection[R].Rutgers University,Department of Statistics and Biostatistics Technical Report,2007. 被引量:1
  • 10Su L,Y Zhang.Variable selection in nonparametric and semiparametric regression models[A],in:Ullah A,Racine J,Su L(eds),Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistic[C].Oxford:Oxford University Press,2013. 被引量:1

共引文献43

同被引文献34

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部