期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于空间特征的谱聚类含噪图像分割 被引量:6
1
作者 刘汉强 赵凤 《模式识别与人工智能》 EI CSCD 北大核心 2012年第3期419-425,共7页
为克服传统谱聚类算法应用到含噪图像分割时易受到图像中噪声影响的问题,提出一种基于空间特征的谱聚类含噪图像分割算法.该方法利用图像各个像素的灰度信息、局部空间邻接信息及非局部空间信息设计像素的三维特征,通过引入空间紧致性... 为克服传统谱聚类算法应用到含噪图像分割时易受到图像中噪声影响的问题,提出一种基于空间特征的谱聚类含噪图像分割算法.该方法利用图像各个像素的灰度信息、局部空间邻接信息及非局部空间信息设计像素的三维特征,通过引入空间紧致性函数建立像素特征点与其K个最近邻之间的相似性,进而利用谱聚类算法得到图像的最终分割结果.实验中采用含噪的人工图像、自然图像及合成孔径雷达图像与空间模糊聚类、规范切谱聚类和Nystrm方法3种算法进行对比实验,实验结果验证文中方法能克服图像中噪声影响并取得较满意的分割效果. 展开更多
关键词 图像分割 谱聚类 局部空间信息 非局部空间信息 相似性矩阵
原文传递
基于改进谱聚类的图像分割算法 被引量:6
2
作者 关昕 周积林 《计算机工程与应用》 CSCD 2014年第21期184-188,共5页
针对传统谱聚类算法应用于图像分割时仅采用特征相似性信息构造相似性矩阵,而忽略了像素分布的空间临近信息的缺陷,提出一种新的相似性度量公式——加权欧氏距离的高斯核函数,充分利用图像特征相似性信息和空间临近信息构造相似性矩阵... 针对传统谱聚类算法应用于图像分割时仅采用特征相似性信息构造相似性矩阵,而忽略了像素分布的空间临近信息的缺陷,提出一种新的相似性度量公式——加权欧氏距离的高斯核函数,充分利用图像特征相似性信息和空间临近信息构造相似性矩阵。在谱映射过程中,采用Nystrom逼近策略近似估计相似性矩阵及其特征向量,大大减少了求解相似性矩阵的运算复杂度,降低了内存消耗。对得到的低维向量子空间采用一种新型的聚类算法——近邻传播聚类算法进行聚类,避免了传统谱聚类采用K-means算法对初始值敏感,易陷入局部最优的缺陷。实验表明该算法获得了比传统谱聚类算法更好的分割效果。 展开更多
关键词 谱聚类 空间临近信息 相似性矩阵 Nystrom逼近策略 近邻传播聚类算法
下载PDF
基于XRF-CNN土壤重金属Zn元素含量预测模型研究 被引量:5
3
作者 陈颖 杨惠 +6 位作者 肖春艳 赵学亮 李康 庞丽丽 史彦新 刘峥莹 李少华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第3期880-885,共6页
结合X射线荧光光谱法,针对土壤中重金属元素Zn含量的预测问题,提出基于深度卷积神经网络回归预测模型。对原始土壤进行相关预处理,用粉末压片法制作土壤压片,采用X射线荧光光谱法(X-Ray-fluorescence,XRF)获取土壤光谱,相比于传统检测方... 结合X射线荧光光谱法,针对土壤中重金属元素Zn含量的预测问题,提出基于深度卷积神经网络回归预测模型。对原始土壤进行相关预处理,用粉末压片法制作土壤压片,采用X射线荧光光谱法(X-Ray-fluorescence,XRF)获取土壤光谱,相比于传统检测方式,XR F法具有检测速度快、精度高、操作简单、不破坏样品属性并且可实现多种重金属元素同时检测等优点,故将XRF与深度卷积神经网络相结合,实现对土壤中重金属Zn元素含量的精确预测。采用箱型图来剔除X射线荧光光谱中的异常数据,采用熵权法结合多元散射校正来对样品盒数据进行校正,采用Savitzky-Golay平滑去噪法以及线性本底法对光谱数据进行预处理,可以有效地解决由外界环境和人为因素产生的噪声及基线漂移等问题。针对卷积神经网络结构的特殊性,将获取的一维光谱数据向量,采用构建光谱数据矩阵的方式来进行处理,将同一浓度、同一含水率下5组平行光谱数据向量转化为二维光谱信息矩阵,以该矩阵作为深度卷积神经网络预测模型的输入,以适应卷积层的操作要求,利用深度卷积神经网络特殊的结构模式,能有效提取土壤光谱数据特征,提高了深度卷积神经网络预测模型的学习能力,降低模型的训练难度。深度卷积神经网络预测模型采用3层卷积层搭建,使用ReLU激活函数激活,采用最大池化方式,减少数据的维度,增加Dropout层,防止过拟合,使用ADAM优化器对预测模型进行优化。实验以平均相对误差(mean rel ative error,MRE)、损失函数(LOSS)、平均绝对误差(mean absolute error,MAE)确定了模型的最优学习率为10^(-3)以及最优迭代次数为3000,并将深度卷积神经网络预测模型与BP预测模型、ELM预测模型、PLS预测模型进行对比,以均方误差(mean square error,MSE)、均方根误差(root mean square error,RMSE)、以及拟合系数R^(2)来分析比较预测模型的 展开更多
关键词 土壤重金属 X射线荧光光谱 光谱信息矩阵 深度卷积神经网络
下载PDF
基于数据简化的改进非负矩阵分解端元提取方法 被引量:2
4
作者 徐君 王旭红 王彩玲 《激光与光电子学进展》 CSCD 北大核心 2019年第9期82-87,共6页
提出了一种基于高光谱数据简化的改进非负矩阵分解端元提取方法,通过计算和比较图像的光谱信息熵,划分图像的同质区,只选择同质区中最具代表性的像元参与非负矩阵分解运算,减少了端元提取算法的运算量。实验结果显示,数据简化前后运用... 提出了一种基于高光谱数据简化的改进非负矩阵分解端元提取方法,通过计算和比较图像的光谱信息熵,划分图像的同质区,只选择同质区中最具代表性的像元参与非负矩阵分解运算,减少了端元提取算法的运算量。实验结果显示,数据简化前后运用非负矩阵分解算法所提取的几种矿物的光谱角均值基本相等,但数据简化后端元提取算法的运行时间减少了4/5,算法的运行效率提高。 展开更多
关键词 图像处理 高光谱遥感 混合像元分解 光谱信息熵 非负矩阵分解 端元提取
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部