In the present study, we investigated the effect of hillslope gradient on vegetation recovery on abandoned land of shifting cultivation In Hainan Island, south China, by measuring community composition and structure o...In the present study, we investigated the effect of hillslope gradient on vegetation recovery on abandoned land of shifting cultivation In Hainan Island, south China, by measuring community composition and structure of 25-year-old secondary forest fallows along a hillslope gradient (up-, middle-, and down-slope position). A total of 49 733 free-standing woody plant stems higher than 10 cm and belonging to 170 species, 112 genera, and 57 families was found in the three l-hm2 investigation plots. Stem density was highest in the down-slope stand and lowest in the up-slope stand. Species richness and the Shannon-Wiener Index were both highest in the middle-slope stand, and lower In the down-slope and up-slope stands. The recovery forest fallows on different hiUslope positions were all dominated by a few species. The five most abundant species accounted for 70.1%, 58.8%, and 72.9% of total stem densities in stands in the up-, middle-, and down-slope positions, respectively. The five species with the greatest basal areas accounted for 74.5%, 84.3%, and 74.7% of total stem basal area for the up-, middle-, and down-slope positions, respectively. The number of low-density species (stem abundance less than five) Increased from the up-slope position downward. Of the nine local common species among three different functional groups, the short-lived pioneer species dominated the up-slope position, but long-lived pioneer species dominated the middle- and down-slope positions. The climax species of primary tropical lowland rain forest was found in the downslope position. Both the mean diameter at breast height (DBH) and mean height of the trees Increased with decreasing hillslope gradient. The stem density and basal area in different size classes were significantly different in stands In different slope positions. Our results indicated that the rate of secondary succession varies, even over small spatial scales caused by the hlllslope gradient, in early vegetation recovery.展开更多
Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on...Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on the sulfidized surface was investigated in various systems,and its effect on the surface hydrophobicity and flotation performance was revealed by multiple analytical methods and experiments.X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(To F-SIMS)characterization demonstrated that the adsorption of Cu^(2+)on sulfidized smithsonite surfaces increased the active Cu—S content,regardless of treatment in any activation system.The sulfidized surface pretreated with NH_(4)^(+)-Cu^(2+)created favorable conditions for the adsorption of more Cu^(2+),significantly enhancing the smithsonite reactivity.Zeta potential determination,ultraviolet(UV)-visible spectroscopy,Fourier transform-infrared(FT-IR)measurements,and contact angle detection showed that xanthate was chemically adsorbed on the sulfidized surface,and its adsorption capacity in various systems was illustrated from qualitative and quantitative aspects.In comparison to the Na2S–Cu^(2+)and Cu^(2+)–Na2S–Cu^(2+)systems,xanthate exhibited a higher adsorption capacity on sulfidized smithsonite surfaces in NH_(4)^(+)-Cu^(2+)–Na2S–Cu^(2+)system.Hence,activation with Cu^(2+)–NH4+synergistic species prior to sulfidization significantly enhanced the mineral surface hydrophobicity,thereby increasing its flotation recovery.展开更多
Environmental degradation and deforestation in Jari Demonstration Plot needed forestation and reforestation,and the plant species selection was a key issue in the ecological recovery.Ecological information was fully c...Environmental degradation and deforestation in Jari Demonstration Plot needed forestation and reforestation,and the plant species selection was a key issue in the ecological recovery.Ecological information was fully considered regarding each species in various agro-climatic zones,altitude ranges,specific niches in different landscapes,soil preference,drought resistance and certain other important ecological factors.The species selection model represents an idea of ecological recovery and soil erosion control in the demonstration plot.展开更多
Against a background of continuing loss of biodiversity, it is argued that for the successful conservation of threatened plant species we need to ensure the more effective integration of the various conservation actio...Against a background of continuing loss of biodiversity, it is argued that for the successful conservation of threatened plant species we need to ensure the more effective integration of the various conservation actions employed, clarify the wording of the CBD targets and provide clearer operational guidance as to how they are to be implemented and their implementation monitored. The role and effectiveness of protected areas in conserving biodiversity and in particular plant species in situ are discussed as are recent proposals for a massive increase of their extent. The need for much greater effort and investment in the conservation or protection of threatened species outside protected areas where most plant diversity occurs is highlighted. The difficulties involved in implementing effective in situ conservation of plant diversity both at an area-and species/population-based level are discussed. The widespread neglect of species recovery for plants is noted and the desirability of making a clearer distinction between species recovery and reintroduction is emphasized. Key messages from a global overview of species recovery are outlined and recommendations made, including the desirability of each country preparing a national species recovery strategy. The projected impacts of global change on protected areas and on species conservation and recovery, and ways of addressing them are discussed.展开更多
基金Supported by the National Natural Science Foundation of China(30340047 and 30430570)
文摘In the present study, we investigated the effect of hillslope gradient on vegetation recovery on abandoned land of shifting cultivation In Hainan Island, south China, by measuring community composition and structure of 25-year-old secondary forest fallows along a hillslope gradient (up-, middle-, and down-slope position). A total of 49 733 free-standing woody plant stems higher than 10 cm and belonging to 170 species, 112 genera, and 57 families was found in the three l-hm2 investigation plots. Stem density was highest in the down-slope stand and lowest in the up-slope stand. Species richness and the Shannon-Wiener Index were both highest in the middle-slope stand, and lower In the down-slope and up-slope stands. The recovery forest fallows on different hiUslope positions were all dominated by a few species. The five most abundant species accounted for 70.1%, 58.8%, and 72.9% of total stem densities in stands in the up-, middle-, and down-slope positions, respectively. The five species with the greatest basal areas accounted for 74.5%, 84.3%, and 74.7% of total stem basal area for the up-, middle-, and down-slope positions, respectively. The number of low-density species (stem abundance less than five) Increased from the up-slope position downward. Of the nine local common species among three different functional groups, the short-lived pioneer species dominated the up-slope position, but long-lived pioneer species dominated the middle- and down-slope positions. The climax species of primary tropical lowland rain forest was found in the downslope position. Both the mean diameter at breast height (DBH) and mean height of the trees Increased with decreasing hillslope gradient. The stem density and basal area in different size classes were significantly different in stands In different slope positions. Our results indicated that the rate of secondary succession varies, even over small spatial scales caused by the hlllslope gradient, in early vegetation recovery.
基金supported by National Natural Science Foundation of China(No.52264026)Yunnan Fundamental Research Projects(Nos.202301AW070018,and 202101BE070001-009)。
文摘Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on the sulfidized surface was investigated in various systems,and its effect on the surface hydrophobicity and flotation performance was revealed by multiple analytical methods and experiments.X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(To F-SIMS)characterization demonstrated that the adsorption of Cu^(2+)on sulfidized smithsonite surfaces increased the active Cu—S content,regardless of treatment in any activation system.The sulfidized surface pretreated with NH_(4)^(+)-Cu^(2+)created favorable conditions for the adsorption of more Cu^(2+),significantly enhancing the smithsonite reactivity.Zeta potential determination,ultraviolet(UV)-visible spectroscopy,Fourier transform-infrared(FT-IR)measurements,and contact angle detection showed that xanthate was chemically adsorbed on the sulfidized surface,and its adsorption capacity in various systems was illustrated from qualitative and quantitative aspects.In comparison to the Na2S–Cu^(2+)and Cu^(2+)–Na2S–Cu^(2+)systems,xanthate exhibited a higher adsorption capacity on sulfidized smithsonite surfaces in NH_(4)^(+)-Cu^(2+)–Na2S–Cu^(2+)system.Hence,activation with Cu^(2+)–NH4+synergistic species prior to sulfidization significantly enhanced the mineral surface hydrophobicity,thereby increasing its flotation recovery.
基金Sponsored by FAO of the United Nations under South-south Cooperation Program in Ethiopia(SSC/SPFS-FAO-ETHIOPIA-CHINA)~~
文摘Environmental degradation and deforestation in Jari Demonstration Plot needed forestation and reforestation,and the plant species selection was a key issue in the ecological recovery.Ecological information was fully considered regarding each species in various agro-climatic zones,altitude ranges,specific niches in different landscapes,soil preference,drought resistance and certain other important ecological factors.The species selection model represents an idea of ecological recovery and soil erosion control in the demonstration plot.
文摘Against a background of continuing loss of biodiversity, it is argued that for the successful conservation of threatened plant species we need to ensure the more effective integration of the various conservation actions employed, clarify the wording of the CBD targets and provide clearer operational guidance as to how they are to be implemented and their implementation monitored. The role and effectiveness of protected areas in conserving biodiversity and in particular plant species in situ are discussed as are recent proposals for a massive increase of their extent. The need for much greater effort and investment in the conservation or protection of threatened species outside protected areas where most plant diversity occurs is highlighted. The difficulties involved in implementing effective in situ conservation of plant diversity both at an area-and species/population-based level are discussed. The widespread neglect of species recovery for plants is noted and the desirability of making a clearer distinction between species recovery and reintroduction is emphasized. Key messages from a global overview of species recovery are outlined and recommendations made, including the desirability of each country preparing a national species recovery strategy. The projected impacts of global change on protected areas and on species conservation and recovery, and ways of addressing them are discussed.