期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
基于深度学习混合模型迁移学习的图像分类 被引量:61
1
作者 石祥滨 房雪键 +1 位作者 张德园 郭忠强 《系统仿真学报》 CAS CSCD 北大核心 2016年第1期167-173,182,共8页
为提高深度模型迁移学习的特征识别力,提出一种基于受限玻尔兹曼机与卷积神经网络混合模型迁移学习的图像分类方法。该方法融合了2种模型特征的学习能力,提取图像的结构性高阶统计特征进行主题分类。该方法在迁移预训练的卷积神经网络... 为提高深度模型迁移学习的特征识别力,提出一种基于受限玻尔兹曼机与卷积神经网络混合模型迁移学习的图像分类方法。该方法融合了2种模型特征的学习能力,提取图像的结构性高阶统计特征进行主题分类。该方法在迁移预训练的卷积神经网络模型到小目标集时,使用受限玻尔兹曼机代替卷积神经网络模型中的全连接层,在目标集上重新训练受限玻尔兹曼机层和Softmax层,并使用BP算法进行参数调整。加入的受限玻尔兹曼机层不仅全连接所有特征maps,还从最大对数似然的角度学习目标集特有的统计特征,消除了数据集间内容差异对迁移学习特征识别力的影响。在Pascal VOC2007和Caltech101数据集上的实验结果表明,该方法具有较高的分类准确率。 展开更多
关键词 图像分类 卷积神经网络 受限玻尔兹曼机 迁移学习 softmax
下载PDF
Softmax分类器深度学习图像分类方法应用综述 被引量:60
2
作者 万磊 佟鑫 +2 位作者 盛明伟 秦洪德 唐松奇 《导航与控制》 2019年第6期1-9,47,共10页
基于深度学习的人工智能图像分类方法研究是当前计算机视觉领域的研究热点。面向深度学习中的Softmax图像分类方法,首先回顾了图像分类技术的发展历程,接着介绍了图像识别技术中的分类器,并解释了Softmax回归函数的分类实现原理。基于So... 基于深度学习的人工智能图像分类方法研究是当前计算机视觉领域的研究热点。面向深度学习中的Softmax图像分类方法,首先回顾了图像分类技术的发展历程,接着介绍了图像识别技术中的分类器,并解释了Softmax回归函数的分类实现原理。基于Softmax回归分类器的应用,详细阐述了多种图像分类技术,具体包括浅层神经网络、深度置信网络、深度自编码器和卷积神经网络。同时,对比介绍了各种级联模型的具体结构、训练方法、实际应用、分类效果以及优缺点。最后,从Softmax回归分类器、深度学习网络模型和高维数据分类三个方面对基于Softmax回归分类器的深度学习模型在图像分类方面的发展与应用前景进行了展望。 展开更多
关键词 图像分类 深度学习 softmax回归 网络模型 分类器
原文传递
基于LSTM-Attention神经网络的文本特征提取方法 被引量:29
3
作者 赵勤鲁 蔡晓东 +1 位作者 李波 吕璐 《现代电子技术》 北大核心 2018年第8期167-170,共4页
针对当前文本分类神经网络不能充分提取词语与词语和句子与句子之间的语义结构特征信息的问题,提出一种基于LSTM-Attention的神经网络实现文本特征提取的方法。首先,分别使用LSTM网络对文本的词语与词语和句子与句子的特征信息进行提取... 针对当前文本分类神经网络不能充分提取词语与词语和句子与句子之间的语义结构特征信息的问题,提出一种基于LSTM-Attention的神经网络实现文本特征提取的方法。首先,分别使用LSTM网络对文本的词语与词语和句子与句子的特征信息进行提取;其次,使用分层的注意力机制网络层分别对文本中重要的词语和句子进行选择;最后,将网络逐层提取得到的文本特征向量使用softmax分类器进行文本分类。实验结果表明,所提方法可以有效地提取文本的特征,使得准确率得到提高。将该方法应用在IMDB,yelp2013和yelp2014数据集上进行实验,分别得到52.4%,66.0%和67.6%的正确率。 展开更多
关键词 LSTM-Attention 注意力机制 文本分类 神经网络 文本特征提取 softmax
下载PDF
稀疏自编码和Softmax回归的快速高效特征学习 被引量:18
4
作者 徐德荣 陈秀宏 田进 《传感器与微系统》 CSCD 2017年第5期55-58,共4页
针对特征学习效果与时间平衡问题,提出了一种快速高效的特征学习方法。将稀疏自编码和Softmax回归组合成一个新的特征提取模型,在提取原始图像潜在信息的基础上,利用多分类器返回值可以反映输入信息的相似程度的特点,快速高效的学习利... 针对特征学习效果与时间平衡问题,提出了一种快速高效的特征学习方法。将稀疏自编码和Softmax回归组合成一个新的特征提取模型,在提取原始图像潜在信息的基础上,利用多分类器返回值可以反映输入信息的相似程度的特点,快速高效的学习利于分类的特征向量。鉴于标签信息已知,该算法在图像分类效果上明显优于几种典型的特征学习方法。为了使所提算法具有更好的泛化能力,回归模型的损失函数中加入了L2范数防止过拟合,同时,采用随机梯度下降的方法得到模型的最优参数。在4个标准数据集上的测试结果表明该算法是有效可行的。 展开更多
关键词 稀疏自编码 softmax回归 特征学习 图像分类 随机梯度下降
下载PDF
基于深度学习和迁移学习的水果图像分类 被引量:17
5
作者 廉小亲 成开元 +2 位作者 安飒 吴叶兰 关文洋 《测控技术》 2019年第6期15-18,共4页
图像识别作为深度学习领域内的一项重要应用,水果图像的分类识别在智慧农业以及采摘机器人等方面具有重要应用。针对以往传统图像分类算法存在泛化能力差、准确率不高等问题,提出一种在TensorFlow框架下基于深度学习和迁移学习的水果图... 图像识别作为深度学习领域内的一项重要应用,水果图像的分类识别在智慧农业以及采摘机器人等方面具有重要应用。针对以往传统图像分类算法存在泛化能力差、准确率不高等问题,提出一种在TensorFlow框架下基于深度学习和迁移学习的水果图像分类算法。该算法采用Inception-V3的部分模型结构对水果图像数据进行特征提取,采用Softmax分类器对图像特征进行分类,并通过迁移学习方式进行训练得到迁移训练模型。测试结果表明,该算法与传统水果分类算法对比,具有较高识别准确率。 展开更多
关键词 图像识别 深度学习 softmax 迁移学习
下载PDF
基于VGG-NET的特征融合面部表情识别 被引量:17
6
作者 李校林 钮海涛 《计算机工程与科学》 CSCD 北大核心 2020年第3期500-509,共10页
为了解决在面部表情特征提取过程中卷积神经网络CNN和局部二值模式LBP只能提取面部表情图像的单一特征,难以提取与面部变化高度相关的精确特征的问题,提出了一种基于深度学习的特征融合的表情识别方法。该方法将LBP特征和CNN卷积层提取... 为了解决在面部表情特征提取过程中卷积神经网络CNN和局部二值模式LBP只能提取面部表情图像的单一特征,难以提取与面部变化高度相关的精确特征的问题,提出了一种基于深度学习的特征融合的表情识别方法。该方法将LBP特征和CNN卷积层提取的特征通过加权的方式结合在改进的VGG-16网络连接层中,最后将融合特征送入Softmax分类器获取各类特征的概率,完成基本的6种表情分类。实验结果表明,所提方法在CK+和JAFFE数据集上的平均识别准确率分别达到了97.5%和97.62%,利用融合特征得到的识别结果明显优于利用单一特征识别的效果。与其他方法相比较,该方法能有效提高表情识别准确率,对光照变化更加鲁棒。 展开更多
关键词 面部表情识别 特征融合 VGG-NET网络 softmax分类
下载PDF
RHS-CNN:一种基于正则化层次Softmax的CNN文本分类模型 被引量:15
7
作者 王勇 何养明 +1 位作者 陈荟西 黎春 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第5期187-195,共9页
传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)... 传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)能极大地提高训练速度,但由于加入了大量的节点参数,使得优化难度增加,优化需要更长的迭代步,且容易过拟合,继而影响模型的拟合速度和分类效果。为此,提出了改进算法模型RHS-CNN(regularization hierarchical softmax CNN),采用正则化的方法,对H-Softmax的节点参数进行约束,避免过拟合,增强模型的泛化能力。实验分析结果表明:所提出的方法在相应评价指标上相对Softmax、H-Softmax有着一定的提升。 展开更多
关键词 文本分类 正则化 H-softmax RHS-CNN
下载PDF
CS-Softmax:一种基于余弦相似性的Softmax损失函数 被引量:10
8
作者 张强 杨吉斌 +2 位作者 张雄伟 曹铁勇 郑昌艳 《计算机研究与发展》 EI CSCD 北大核心 2022年第4期936-949,共14页
卷积神经网络分类框架广泛使用了基于Softmax函数的交叉熵损失(Softmax损失函数),在很多领域中都取得了良好的性能.但是由于Softmax损失函数并不鼓励增大类内紧凑性和类间分离性,在一些多分类问题中,卷积神经网络学习到的判别性嵌入表... 卷积神经网络分类框架广泛使用了基于Softmax函数的交叉熵损失(Softmax损失函数),在很多领域中都取得了良好的性能.但是由于Softmax损失函数并不鼓励增大类内紧凑性和类间分离性,在一些多分类问题中,卷积神经网络学习到的判别性嵌入表示的性能难以进一步提高.为了增强嵌入表示的判别性,提出了一种基于余弦相似性的Softmax(cosine similarity-based Softmax,CS-Softmax)损失函数.CS-Softmax损失函数在不改变神经网络结构的条件下,分别计算嵌入表示与分类全连接层权重的正相似性和负相似性,以实现同类紧凑和异类分离的训练目标.理论分析表明:边距因子、尺度因子、权重更新因子等参数的引入,可以调节各类别决策边距的大小,增大类内紧凑性、类间分离性,增强学习到的嵌入表示的判别性.在典型的音频、图像数据集上的仿真实验结果表明:CS-Softmax损失函数在不增加计算复杂度的同时,可以有效提升多分类任务性能,在MNIST,CIFAR10,CIFAR100图像分类任务中分别取得了99.81%,95.46%,76.46%的分类精度. 展开更多
关键词 模式分类 卷积神经网络 损失函数 softmax 余弦相似性
下载PDF
基于改进DCNN结合迁移学习的图像分类方法 被引量:11
9
作者 杨东旭 赖惠成 +1 位作者 班俊硕 王俊南 《新疆大学学报(自然科学版)》 CAS 2018年第2期195-202,共8页
针对传统DCNN(Deep Convolutional Neural Networks)模型中Softmax分类层存在的过早饱和及模型参数采用随机初始化训练时间长、识别准确率低的问题,提出一种将噪声注入Softmax并结合迁移学习的图像分类方法.首先,根据对Softmax饱和问题... 针对传统DCNN(Deep Convolutional Neural Networks)模型中Softmax分类层存在的过早饱和及模型参数采用随机初始化训练时间长、识别准确率低的问题,提出一种将噪声注入Softmax并结合迁移学习的图像分类方法.首先,根据对Softmax饱和问题探究,对比注入的噪声参数选取对识别率的影响来找到最佳情况,从而产生更为宽泛的梯度并起到延迟饱和的作用;然后,利用公开预训练模型参数来代替随机初始化参数,并比较冻结不同卷积层对模型的影响;最后,在MNIST和CIFAR-10图像分类数据集上实验,证明所提方法具有良好的识别效果. 展开更多
关键词 DCNN 噪声softmax 迁移学习 图像分类
下载PDF
基于多种特征池化的中文文本分类算法 被引量:11
10
作者 阳馨 蒋伟 刘晓玲 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期287-292,共6页
文本分类是文本挖掘的一个内容,在信息检索、邮件过滤及网页分类等领域有着广泛的应用价值.目前文本分类算法在特征表示上的信息仍然不足,对此本文提出了基于多种特征池化的文本分类算法.在该算法中,本文首先对分词后的文本采用skip-gra... 文本分类是文本挖掘的一个内容,在信息检索、邮件过滤及网页分类等领域有着广泛的应用价值.目前文本分类算法在特征表示上的信息仍然不足,对此本文提出了基于多种特征池化的文本分类算法.在该算法中,本文首先对分词后的文本采用skip-gram模型获取词向量,然后对整个文本的词向量进行多种池化,最后将多种池化的特征作为一个整体输入到Softmax回归模型中得到文本的类别信息.通过对复旦大学所提供的文本分类语料库(复旦)测试语料的实验,该结果表明,本文所给出的多种特征池化方法能够提高文本分类的准确率,证明了本文算法的有效性. 展开更多
关键词 中文文本分类 池化 分类算法 Skip-gram softmax
下载PDF
基于Softmax分类器的小春作物种植空间信息提取 被引量:10
11
作者 蒋怡 黄平 +4 位作者 董秀春 李宗南 王昕 魏来 邱金春 《西南农业学报》 CSCD 北大核心 2019年第8期1880-1885,F0003,共7页
[目的]使用浅层机器学习分类方法和多光谱遥感影像快速准确提取研究区小春作物(油菜、小麦)种植空间信息。[方法]选择研究区小春作物识别最佳时期的Sentinel 2A MSI多光谱影像,融合得到10 m分辨率影像,然后降尺度生成15、20、30 m分辨... [目的]使用浅层机器学习分类方法和多光谱遥感影像快速准确提取研究区小春作物(油菜、小麦)种植空间信息。[方法]选择研究区小春作物识别最佳时期的Sentinel 2A MSI多光谱影像,融合得到10 m分辨率影像,然后降尺度生成15、20、30 m分辨率影像,结合地面调查数据,建立油菜、小麦、林地、居民地、水体等典型地物感兴趣区,训练Softmax分类器,基于不同空间分辨率影像提取油菜、小麦种植空间信息。[结果]①基于Softmax分类器和10 m分辨率融合影像的小春作物分类总体精度为90.02%,Kappa系数为0.8344,其中油菜生产者精度和用户精度分别为93.14%、91.42%,小麦的分别为87.93%,98.09%;②Softmax法的小春作物分类精度随影像空间分辨率下降而降低,15、20、30 m分辨率影像的分类精度较10 m的分别下降9.80%、12.04%和13.04%,Kappa系数依次减少0.1538,0.1873和0.2088;③15、20、30 m分辨率影像的油菜分类精度较小麦的低,影响因素为油菜花期和种植地块破碎分散。[结论]Softmax分类器在10~30 m中高分辨率影像小春作物分类中具备较高的精度,可作为常规方法应用于业务化的作物监测工作。 展开更多
关键词 小春作物 softmax 机器学习 空间分辨率 分类精度
下载PDF
基于MobileNet的恶意软件家族分类模型 被引量:10
12
作者 曾娅琴 张琳琳 +1 位作者 张若楠 杨波 《计算机工程》 CAS CSCD 北大核心 2020年第4期162-168,共7页
现有基于卷积神经网络(CNN)的恶意代码分类方法存在计算资源消耗较大的问题.为降低分类过程中的计算量和参数量,构建基于恶意代码可视化和轻量级CNN模型的恶意软件家族分类模型.将恶意软件可视化为灰度图,以灰度图的相似度表示同一家族... 现有基于卷积神经网络(CNN)的恶意代码分类方法存在计算资源消耗较大的问题.为降低分类过程中的计算量和参数量,构建基于恶意代码可视化和轻量级CNN模型的恶意软件家族分类模型.将恶意软件可视化为灰度图,以灰度图的相似度表示同一家族的恶意软件在代码结构上的相似性,利用灰度图训练带有深度可分离卷积的神经网络模型MobileNet v2,自动提取纹理特征,并采用Softmax分类器对恶意代码进行家族分类.实验结果表明,该模型对恶意代码分类的平均准确率为99.32%,较经典的恶意代码可视化模型高出2.14个百分点. 展开更多
关键词 卷积神经网络 恶意软件分类 纹理特征 MobileNet v2模型 softmax模型
下载PDF
局部特征映射与融合网络的人脸识别优化算法 被引量:5
13
作者 徐武 陈盈君 +2 位作者 汤弘毅 杨昊东 秦浩然 《河南科技大学学报(自然科学版)》 CAS 北大核心 2023年第2期59-64,72,共7页
针对传统特征提取算法的局限性,提出基于深度神经网络DeepLab v2的人脸识别改进算法。首先,对图像中人脸进行定位,采用DeepLab v2改进网络提取人脸的面部特征,通过加入压缩激励(SE)模块细化多角度纹理特征。其次,采用局部二值模式(LBP)... 针对传统特征提取算法的局限性,提出基于深度神经网络DeepLab v2的人脸识别改进算法。首先,对图像中人脸进行定位,采用DeepLab v2改进网络提取人脸的面部特征,通过加入压缩激励(SE)模块细化多角度纹理特征。其次,采用局部二值模式(LBP)特征映射对目标图像进行补充特征提取,细化纹理结构并减少光照噪声的干扰,提升识别的鲁棒性。最后,进行特征信息融合,采用分类模块对融合特征识别并分类处理。结果表明:对比经典目标检测算法YOLOv1和传统DeepLab算法,改进算法识别出多角度的人脸局部特征,且在正常光照下改进算法的识别精确度分别提高了3.1%和5.9%,在强光照下改进算法的识别精确度分别提高了9.5%和13.6%。 展开更多
关键词 人脸识别 神经网络 SE模块 局部二值模式 softmax分类
下载PDF
基于移动分割与轻量化分类网络的红外目标实时识别方法 被引量:8
14
作者 王倩 张海峰 +1 位作者 米娜 尹泽楠 《光学技术》 CSCD 北大核心 2021年第4期483-488,共6页
战场野外复杂红外场景中,由于背景灰度分布无规律、目标边缘模糊且纹理特征缺失,目标极易混淆在背景之中;由于嵌入式平台算力的限制,多数深度学习类检测算法难以应用于便携设备,无法实现快速有效的目标识别。提出一种基于运动目标提取... 战场野外复杂红外场景中,由于背景灰度分布无规律、目标边缘模糊且纹理特征缺失,目标极易混淆在背景之中;由于嵌入式平台算力的限制,多数深度学习类检测算法难以应用于便携设备,无法实现快速有效的目标识别。提出一种基于运动目标提取与高效机器学习模型结合的目标识别方法:通过运动检测实现目标像素级分割,经形态学处理后,定位单体目标;根据嵌入式平台算力高低,选择轻量化深度网络特征或轮廓特征,训练softmax模型,实现目标分类识别。将算法移植于嵌入式平台,对开源红外图像序列进行目标识别实验,实现多目标同时定位与分类,处理速度达56FPS。实验结果表明,该方法可对复杂背景中的红外目标进行实时有效识别。 展开更多
关键词 红外目标识别 动目标检测 softmax分类 深度神经网络
原文传递
基于深度神经网络的人体动作识别方法 被引量:8
15
作者 魏丽冉 岳峻 +2 位作者 朱华 牟梦媛 杨照璐 《济南大学学报(自然科学版)》 CAS 北大核心 2019年第3期215-223,228,共10页
针对静态图像集中人体动作种类繁杂且识别准确率较低的问题,提出一种基于深度神经网络的人体动作识别方法;该方法采用迁移学习的思想对GoogLeNet模型进行改进,使得网络在预训练之后能够对行为个体的种类具有一定的姿势表达能力;采用逻... 针对静态图像集中人体动作种类繁杂且识别准确率较低的问题,提出一种基于深度神经网络的人体动作识别方法;该方法采用迁移学习的思想对GoogLeNet模型进行改进,使得网络在预训练之后能够对行为个体的种类具有一定的姿势表达能力;采用逻辑分类中的逻辑回归多分类来实现动作的多分类,并通过建立动作识别模型应用系统对其进行验证;通过MATLAB2017处理平台对该模型进行测试,并得出图像的平均识别率。结果表明,本文中提出的方法在公开的图像数据集PPMI上的平均识别率相对较高,证实了构建的基于GoogLeNet人体动作识别模型应用系统对人体动作的分类是可行且有效的。 展开更多
关键词 深度神经网络 GoogLeNet模型 动作识别 softmax分类 静态图像
下载PDF
基于深度学习算法的人事考评信息非线性映射方法
16
作者 刘宁 郭芳琳 +2 位作者 杨明杰 寇小霞 张珍芬 《自动化技术与应用》 2024年第1期166-169,共4页
目前人事的考评方法无法准确获取考评指标,导致考评耗时高、考评精确度低、用户满意度低。为此,提出基于深度学习算法的人事考评信息非线性映射方法。采用深度学习算法对人事信息进行处理,获得人事信息的特征,并将其输入Softmax分类器中... 目前人事的考评方法无法准确获取考评指标,导致考评耗时高、考评精确度低、用户满意度低。为此,提出基于深度学习算法的人事考评信息非线性映射方法。采用深度学习算法对人事信息进行处理,获得人事信息的特征,并将其输入Softmax分类器中;根据特征分类结果,选取人事考评指标;采用非线性映射获取人事考评特征与考评等级之间的关系,完成人事的考评。实验结果表明,所提方法的考评耗时最高为37 s,考评精确度在95%以上,用户满意度接近100%。 展开更多
关键词 深度学习算法 softmax分类器 非线性映射方法 特征分类
下载PDF
基于机器学习的心律失常信号分类算法研究 被引量:5
17
作者 刘腾 唐虹 张士兵 《计算机应用研究》 CSCD 北大核心 2020年第3期940-943,共4页
心电图中心律失常信号的分类识别是诊断心血管类疾病的重要依据。基于MIT-BIH提供的数据文件,通过小波变换提取了心电信号的21组特征信息,针对常见五类心律信号的分类识别进行了研究,设计实现了基于softmax回归和神经网络的分类算法。... 心电图中心律失常信号的分类识别是诊断心血管类疾病的重要依据。基于MIT-BIH提供的数据文件,通过小波变换提取了心电信号的21组特征信息,针对常见五类心律信号的分类识别进行了研究,设计实现了基于softmax回归和神经网络的分类算法。实验结果表明,一个适用的神经网络算法训练速度更快,在较少的迭代次数下,分类识别的正确率稳定在90%以上。 展开更多
关键词 心律失常信号 分类识别 小波变换 softmax回归 深度神经网络
下载PDF
基于任务优化表示学习的文本分类 被引量:1
18
作者 尹雪婷 武娇 +1 位作者 顾兴全 刘雅萱 《中国计量大学学报》 2023年第1期110-119,共10页
目的:针对现有的文本特征加权方法对文本进行向量化表示时,依赖于词频来确定单词的重要性,无法准确表达文本信息,从而导致文本表示过程中特征信息的丢失,准确率低下等问题。方法:提出一种基于任务优化文本表示学习的文本分类算法。通过... 目的:针对现有的文本特征加权方法对文本进行向量化表示时,依赖于词频来确定单词的重要性,无法准确表达文本信息,从而导致文本表示过程中特征信息的丢失,准确率低下等问题。方法:提出一种基于任务优化文本表示学习的文本分类算法。通过引入加权因子,设计一种加权向量空间模型对每个特征进行加权,将单词的上下文信息和任务信息结合起来,采用Softmax回归算法迭代地对模型参数和文本表示进行优化学习,在提高分类性能的同时,获得对此任务最优的文本表示模型。结果:根据分类任务学习到的特征词的权值能够更加准确地表达文本的分类信息。与其他分类算法相比,本文提出的WVSM-Softmax算法精度提高了约0.8%~8.7%。结论:基于任务优化文本表示学习的Softmax回归算法在文本分类中具有更好的性能。 展开更多
关键词 文本表示 向量空间模型 softmax回归 文本分类
下载PDF
基于优化Focal-XGBoost的变压器状态声振识别模型
19
作者 许洪华 尹来宾 李勇 《电机与控制应用》 2023年第8期38-45,共8页
受数据样本难以区分和数据平衡性不佳影响,采用声振信号的变压器状态识别模型往往准确率低下。针对这一问题,引入了Focal损失,根据样本训练过程的准确度动态反馈权重,从而构成了Focal-XGBoost优化模型。先通过一组贴合变压器频谱的滤波... 受数据样本难以区分和数据平衡性不佳影响,采用声振信号的变压器状态识别模型往往准确率低下。针对这一问题,引入了Focal损失,根据样本训练过程的准确度动态反馈权重,从而构成了Focal-XGBoost优化模型。先通过一组贴合变压器频谱的滤波器充分提取声振信号有效信息,再作XGBoost-PCA筛选降低样本维度。然后采用Focal损失优化原模型中的Softmax目标函数形成Focal-XGBoost模型,并在输入上述样本后根据准确率波动作Focal的超参数优化,进而输出变压器状态识别结果。10 kV和110 kV变压器的试验结果表明,相较传统SVM、KNN等学习模型,Focal-XGBoost减少了XGBoost测试样本中难分样本的误分量44.7%,从而使模型识别准确率更高;此外,非均匀提取在平均精度损失低于0.5%的基础上压缩50%样本空间,进一步降低了模型训练成本。 展开更多
关键词 非均匀滤波 Focal损失 softmax分类 变压器状态识别 XGBoost算法
下载PDF
ResNet模型在智能岩石勘测小车上的应用研究
20
作者 喻飞根 刘科 《现代信息科技》 2023年第8期88-91,95,共5页
文章以实现地质勘探无人化和岩石分类智能化为目标,设计出用于地质勘探现场的具有岩石分类功能的智能导航小车系统。该系统分为小车模块和岩石分类模块两部分,小车模块利用ROS平台进行开发,得到勘探区域环境数据后,利用SLAM算法生成栅... 文章以实现地质勘探无人化和岩石分类智能化为目标,设计出用于地质勘探现场的具有岩石分类功能的智能导航小车系统。该系统分为小车模块和岩石分类模块两部分,小车模块利用ROS平台进行开发,得到勘探区域环境数据后,利用SLAM算法生成栅格地图并进行路径规划来获得全局最优路径,最后小车自动导航至该地点并获得该区域的岩石图片。岩石分类模块采用深度学习技术对岩石图片进行分类,基于Softmax分类器和ResNet101神经网络模型,建立岩石分类模型。 展开更多
关键词 岩石分类 SLAM算法 自动导航 ResNet模型 softmax
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部