期刊文献+

基于深度学习和迁移学习的水果图像分类 被引量:17

Fruit Image Classification Based on Deep Learning and Transfer Learning
下载PDF
导出
摘要 图像识别作为深度学习领域内的一项重要应用,水果图像的分类识别在智慧农业以及采摘机器人等方面具有重要应用。针对以往传统图像分类算法存在泛化能力差、准确率不高等问题,提出一种在TensorFlow框架下基于深度学习和迁移学习的水果图像分类算法。该算法采用Inception-V3的部分模型结构对水果图像数据进行特征提取,采用Softmax分类器对图像特征进行分类,并通过迁移学习方式进行训练得到迁移训练模型。测试结果表明,该算法与传统水果分类算法对比,具有较高识别准确率。 Image recognition is an important application in the field of deep learning.The classification and recognition of fruit images has important applications in smart agriculture and picking robots.Inorder to solve the problems of poor generalization ability and low accuracy in traditional image classification algorithms,a fruit image classification algorithm based on deep learning and migration learning under TensorFlow framework is proposed.The partial model structure of Inception-V3 is used to extract the feature image of fruit image,and Softmax classifier is used to classify the image features,which trained by migration learning to obtain the migration training model.The test results show that the algorithm has higher recognition accuracy than the traditional fruit classification algorithm.
作者 廉小亲 成开元 安飒 吴叶兰 关文洋 LIAN Xiao-qin;CHENG Kai-yuan;AN Sa;WU Ye-lan;GUAN Wen-yang(Beijing Key Laboratory of Big Data Technology for Food Safety,School of Computer and Infomation Engineering,Beijing Technology and Business University,Beijing 100048,China)
出处 《测控技术》 2019年第6期15-18,共4页 Measurement & Control Technology
基金 北京高等学校教育教学改革项目(2015-ms146) 科技创新服务能力建设(PXM2018_014213_000033) 北京工商大学研究生培养-研究生教育质量提升计划项目(19008001491)
关键词 图像识别 深度学习 Softmax 迁移学习 image classification deep learning Softmax transfer learning
  • 相关文献

参考文献6

二级参考文献30

  • 1Kavdir. Apple Sorting Using Artificial Neural Networks and Spectral lmaging[J ]. American Society of Agricultural Engineers, 2002, 45(6) : 1995-2005. 被引量:1
  • 2Yimyam P, Chalidabhongse T, Sirimmboon P, et al. Physical Properties Analysis of Mango Using Computer Vision[EB/OL]. Http://2005. iccas, org/submission/paper/upload/2 ICCAS2005-188-Chalidabhongse. pdf. 被引量:1
  • 3Femdndez-Delgado M, Cemadas E,Barro S, et al. Dowe Need Hundreds of Classifiers to Solve Real WorldClassification Problems? [J]. Journal of MachineLearning Research (SI 532-4435), 2014, 15(1):3133-3181. 被引量:1
  • 4Joachims T. Making Large-scale Support VectorMachine Learning Practical [C]// Advances in kernelmethods. USA: MIT Press, 1999: 169-184. 被引量:1
  • 5Harada T, Ushiku Y,Yamashita Y,et al. DiscriminativeSpatial Pyramid [C]// Computer Vision and PatternRecognition (CVPR), 2011 IEEE Conference on. USA:IEEE, 2011: 1617-1624. 被引量:1
  • 6S 6 nchez J, Perronnin F, Mensink T, et al. ImageClassification with the Fisher Vector; Theory andPractice [J]. International Journal of Computer Vision(S0920-5691), 2013, 105(3): 222-245. 被引量:1
  • 7Zhang C, Liu J, Tian Q, et al. Image Classification byNon-negative Sparse Coding, Low-rank and SparseDecomposition [C]// Computer Vision and PatternRecognition (CVPR), 2011 IEEE Conference on. USA:IEEE, 2011: 1673-1680. 被引量:1
  • 8Boureau Y L, Bach F, LeCun Y,et al. Learningmid-level features for recognition[C]//Computer Visionand Pattern Recognition (CVPR), 2010 IEEEConference on. USA:IEEE,2010: 2559-2566. 被引量:1
  • 9Lecun Y, Kavukcuoglu K, Farabet C. ConvolutionalNetworks and Applications in Vision [C]// Circuits andSystems (ISCAS), Proceedings of 2010 IEEEInternational Symposium on. USA: IEEE, 2010: 253-256. 被引量:1
  • 10Bouvrie J. Notes on Convolutional Neural Networks[R]// MIT-CBCL Technical Reports. Germany: SpringerInternational, 2006: 38-44. 被引量:1

共引文献103

同被引文献207

引证文献17

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部