Compared with the power conversion efficicency,the operational stability of perovskite solar cells(PsCs)remains a major challenge hampering its commercialization.However,conducting a light soaking test under 1 sun ill...Compared with the power conversion efficicency,the operational stability of perovskite solar cells(PsCs)remains a major challenge hampering its commercialization.However,conducting a light soaking test under 1 sun illumination to get a long lifetime is time-consuming and experimentally inefficient.Here,we report an accelerated stability test protocol by aging PsCs under high-intensity light illumination to accelerate the evaluation of their operation stability.It is found that the efficiency degradation rate of a typical inverted PsC is almost linearly dependent on the light intensity within the range of 1 to 4 suns regardless of the encapsulations.The results prove that it can save the light-soaking time by at least 4 times to predict the operation lifetime on the basis of the equivalent light irradiation dose.展开更多
Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y...Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y6 non-fullerene acceptors(NFAs),together with PM6 electron donor polymers.PCEs are on the rise for small-area OSCs.However,large-area OSC sub-modules are still unable to achieve such high PCEs,and the highest certified PCE reported so far is∼12%having an area of 58 cm2.To fabricate efficient large-area OSCs,new custom-designed NFAs for large-area systems are imminent along with improvements in the sub-module fabrication platforms.Moreover,the search for stable yet efficient OSCs is still in progress.In this review,progress in small-area OSCs is presented with reference to the advancement in the chemical structure of NFAs and donor polymers.Finally,the life-cycle assessment of OSCs is presented and the energy payback time of the efficient and stable OSCs is discussed and lastly,an outlook for the OSCs is given.展开更多
In perovskite solar cells(PSCs),the light-soaking effect,which means device performance changes obviously under continuous light illumination,is potentially harmful to loaded devices as well as accurately assessing th...In perovskite solar cells(PSCs),the light-soaking effect,which means device performance changes obviously under continuous light illumination,is potentially harmful to loaded devices as well as accurately assessing their efficiency.Herein,chemically stable tungsten trioxide(WO3)with high electron mobility is used as electron transport material in methylamine(MA)-free PSCs.However,the light-soaking effect is observed apparently in our devices.A fullerene derivative,C60 pyrrolidine Tris-acid(CPTA),is introduced to modify the interface between WO3 and perovskite(PVK)layers,which can bond with WO3 and PVK simultaneously,leading to the passivation of the defect and the suppression of trap-assisted nonradiative recombination.What is more,the introduction of CPTA can enhance the built-in electric field between WO3 and PVK layers,thereby facilitating the electron extraction and inhibiting the carrier accumulation at the interface.Consequently,the lightsoaking effect of WO3-based PSCs has been eliminated,and the power conversion efficiency has been boosted from 17.4%for control device to 20.5%for WO3/CPTA-based PSC with enhanced stability.This study gives guidance for the design of interfacial molecules to eliminate the light-soaking effect.展开更多
基金financially supported by the Ministry of Science and Technology of China (2021YFB3800104)the National Natural Science Foundation of China (52002140, U20A20252)+3 种基金the Young Elite Scientists Sponsorship Program by CASTthe Selfdetermined and Innovative Research Funds of HUST(2020kfyXJJS008)the Natural Science Foundation of Hubei Province (2022CFA093)the Innovation Project of Optics Valley Laboratory (Grant No. OVL2021BG008)
文摘Compared with the power conversion efficicency,the operational stability of perovskite solar cells(PsCs)remains a major challenge hampering its commercialization.However,conducting a light soaking test under 1 sun illumination to get a long lifetime is time-consuming and experimentally inefficient.Here,we report an accelerated stability test protocol by aging PsCs under high-intensity light illumination to accelerate the evaluation of their operation stability.It is found that the efficiency degradation rate of a typical inverted PsC is almost linearly dependent on the light intensity within the range of 1 to 4 suns regardless of the encapsulations.The results prove that it can save the light-soaking time by at least 4 times to predict the operation lifetime on the basis of the equivalent light irradiation dose.
基金the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(Grant No.2021R1A2C3008724).
文摘Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y6 non-fullerene acceptors(NFAs),together with PM6 electron donor polymers.PCEs are on the rise for small-area OSCs.However,large-area OSC sub-modules are still unable to achieve such high PCEs,and the highest certified PCE reported so far is∼12%having an area of 58 cm2.To fabricate efficient large-area OSCs,new custom-designed NFAs for large-area systems are imminent along with improvements in the sub-module fabrication platforms.Moreover,the search for stable yet efficient OSCs is still in progress.In this review,progress in small-area OSCs is presented with reference to the advancement in the chemical structure of NFAs and donor polymers.Finally,the life-cycle assessment of OSCs is presented and the energy payback time of the efficient and stable OSCs is discussed and lastly,an outlook for the OSCs is given.
基金National Natural Science Foundation of China,Grant/Award Numbers:51925206,U1932214National Key Research and Development Program of China,Grant/Award Number:2017YFA0402800。
文摘In perovskite solar cells(PSCs),the light-soaking effect,which means device performance changes obviously under continuous light illumination,is potentially harmful to loaded devices as well as accurately assessing their efficiency.Herein,chemically stable tungsten trioxide(WO3)with high electron mobility is used as electron transport material in methylamine(MA)-free PSCs.However,the light-soaking effect is observed apparently in our devices.A fullerene derivative,C60 pyrrolidine Tris-acid(CPTA),is introduced to modify the interface between WO3 and perovskite(PVK)layers,which can bond with WO3 and PVK simultaneously,leading to the passivation of the defect and the suppression of trap-assisted nonradiative recombination.What is more,the introduction of CPTA can enhance the built-in electric field between WO3 and PVK layers,thereby facilitating the electron extraction and inhibiting the carrier accumulation at the interface.Consequently,the lightsoaking effect of WO3-based PSCs has been eliminated,and the power conversion efficiency has been boosted from 17.4%for control device to 20.5%for WO3/CPTA-based PSC with enhanced stability.This study gives guidance for the design of interfacial molecules to eliminate the light-soaking effect.
文摘以苋菜为原料,采用溶剂浸提法和超声波萃取法从苋菜中提取苋菜红色素,对提取工艺条件及色素稳定性进行了研究.单因素实验、正交试验及苋菜红色素对光、热和pH稳定性实验的结果表明:超声波法提取的苋菜红色素较浸提法提取的色素得率高、稳定性好;超声法提取苋菜红色素的最佳工艺条件:超声波功率400W、料液比1∶4、温度40℃、超声时间20 min.