The dependence between neutron skin thickness and neutron abrasion cross section (σnabr) for neutron-rich nuclei is investigated within the framework of the statistical abrasion ablation model. Assuming that the de...The dependence between neutron skin thickness and neutron abrasion cross section (σnabr) for neutron-rich nuclei is investigated within the framework of the statistical abrasion ablation model. Assuming that the density distributions for proton and neutron are of Fermi-type, and adjusting the diffuseness parameter of neutron density distribution in the droplet model, we find out the good linear correlation between the neutron skin thickness and the abrasion cross section σnabr for neutron-rich nuclei. The uncertainty of neutron skin thickness determined from σnabr is very small. It is suggested that σnabr can be used as a new experimental observable to extract the neutron skin thickness for neutronrich nucleus. The scaling behaviours between neutron skin thickness and σnabr, separately, for isotopes of ^26-35Na, ^44-56Ar, ^48-60Ca, ^67-78Ni are also investigated.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775168,10405032,10535010,10405033,10605036 and 10475108)the Shanghai Development Foundation for Science and Technology (Grant Nos 06QA14062,06JC14082 and 05XD14021)+1 种基金the State Key Program of Basic Research of China (Grant No 2007CB815004)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No KJCX3.SYW.N2)
文摘The dependence between neutron skin thickness and neutron abrasion cross section (σnabr) for neutron-rich nuclei is investigated within the framework of the statistical abrasion ablation model. Assuming that the density distributions for proton and neutron are of Fermi-type, and adjusting the diffuseness parameter of neutron density distribution in the droplet model, we find out the good linear correlation between the neutron skin thickness and the abrasion cross section σnabr for neutron-rich nuclei. The uncertainty of neutron skin thickness determined from σnabr is very small. It is suggested that σnabr can be used as a new experimental observable to extract the neutron skin thickness for neutronrich nucleus. The scaling behaviours between neutron skin thickness and σnabr, separately, for isotopes of ^26-35Na, ^44-56Ar, ^48-60Ca, ^67-78Ni are also investigated.