期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
基于深度卷积神经网络的双目立体视觉匹配算法 被引量:34
1
作者 肖进胜 田红 +2 位作者 邹文涛 童乐 雷俊锋 《光学学报》 EI CAS CSCD 北大核心 2018年第8期171-177,共7页
对于基于块进行立体匹配的深度学习方法而言,网络结构的设计对匹配代价的计算至关重要,同时,卷积神经网络(CNN)在图像处理时的耗时问题也亟待解决。提出一种基于"缩小型"网络的CNN立体匹配方法。利用CNN训练左右图像块的相似... 对于基于块进行立体匹配的深度学习方法而言,网络结构的设计对匹配代价的计算至关重要,同时,卷积神经网络(CNN)在图像处理时的耗时问题也亟待解决。提出一种基于"缩小型"网络的CNN立体匹配方法。利用CNN训练左右图像块的相似性,计算出立体匹配的匹配代价。其中,CNN特征提取阶段,通过对每个层增加相应的批归一化层,可以使训练使用更大的学习率,加快网络训练收敛速度。另外,网络设计中全连接层采用"逐层缩小"的形式,结合上述网络优化和损失函数改善,在保证精度的同时提高了运行速度。使用KITTI数据集对算法进行验证,实验结果证明,相比目前国内外先进方法,本文算法在精度方面有一定优势,相比部分方法,速度有较大提升。 展开更多
关键词 机器视觉 立体匹配 匹配代价 相似性学习 卷积神经网络
原文传递
基于度量的小样本分类方法研究综述 被引量:13
2
作者 刘鑫 周凯锐 +2 位作者 何玉琳 景丽萍 于剑 《模式识别与人工智能》 CSCD 北大核心 2021年第10期909-923,共15页
小样本学习旨在让机器像人类一样通过对少量样本的学习达到对事物认知和概括的能力.基于度量的小样本学习方法希望学习一个低维嵌入空间,直接对比查询集合和支持类之间的相似性,分类测试样本.文中针对基于度量的小样本学习方法,尝试从... 小样本学习旨在让机器像人类一样通过对少量样本的学习达到对事物认知和概括的能力.基于度量的小样本学习方法希望学习一个低维嵌入空间,直接对比查询集合和支持类之间的相似性,分类测试样本.文中针对基于度量的小样本学习方法,尝试从这类方法需要解决的关键问题、类表示学习和相似性度量入手,梳理相关文献.与已有相关综述不同,文中只针对基于度量的小样本学习方法进行更详尽全面的分类,而且从关键问题角度进行分类.最后总结目前代表性工作在常用的图像分类任务数据集上的实验结果,分析现有方法存在的问题,并展望未来工作. 展开更多
关键词 小样本学习 基于度量的小样本学习 类表示 相似性学习 图像分类
下载PDF
基于图注意力机制和Transformer的异常检测 被引量:13
3
作者 严莉 张凯 +3 位作者 徐浩 韩圣亚 刘珅岐 史玉良 《电子学报》 EI CAS CSCD 北大核心 2022年第4期900-908,共9页
异常检测对电力行业的发展有着重要的影响,如何根据大规模电力数据进行异常检测是重要的研究热点.目前,大多数研究通过聚类或神经网络进行异常检测.但是这些方法忽略了时序数据之间潜在的关联关系及某些特点的重要信息,没有充分挖掘出... 异常检测对电力行业的发展有着重要的影响,如何根据大规模电力数据进行异常检测是重要的研究热点.目前,大多数研究通过聚类或神经网络进行异常检测.但是这些方法忽略了时序数据之间潜在的关联关系及某些特点的重要信息,没有充分挖掘出数据的潜在价值.因此,提出了一种基于图注意力和Transformer的异常检测模型.该模型首先根据数据中台中获取的电力数据(主要包括用户ID、电能表ID、用户类型、电流、电压、功率等数据)构建一个异构信息网络;然后,为了减少模型参数和避免出现过拟合的现象,在图卷积网络(Graph Convolutional Network,GCN)模型的基础上,引入非负矩阵分解(Non-Negative Matrix Factorization,NNMF)的方法来进行相似性学习;最后采用图注意力网络(Graph Attention Network,GAT)和Transformer共同捕获数据间的相互关联关系,从而提高检测精度.以中国某地区的电力数据为基础进行验证,实验结果表明所提出的方法可以有效进行异常检测. 展开更多
关键词 异常检测 异构信息网络 相似性学习 图注意力网络 TRANSFORMER
下载PDF
基于相似度学习的多源迁移算法 被引量:10
4
作者 卞则康 王士同 《控制与决策》 EI CSCD 北大核心 2017年第11期1941-1948,共8页
针对与测试数据分布相同的训练数据不足,相关领域中存在大量的、与测试数据分布相近的训练数据的场景,提出一种基于相似度学习的多源迁移学习算法(SL-MSTL).该算法在经典SVM分类模型的基础上提出一种新的迁移分类模型,增加对多源域与目... 针对与测试数据分布相同的训练数据不足,相关领域中存在大量的、与测试数据分布相近的训练数据的场景,提出一种基于相似度学习的多源迁移学习算法(SL-MSTL).该算法在经典SVM分类模型的基础上提出一种新的迁移分类模型,增加对多源域与目标域之间的相似度学习,可以有效地利用各源域中的有用信息,提高目标域的分类效果.实验的结果表明了SL-MSTL算法的有效性和实用性. 展开更多
关键词 相似度学习 多源域 迁移学习 SVM 迁移分类
原文传递
基于二阶段相似度学习的协同过滤推荐算法 被引量:8
5
作者 沈键 杨煜普 《计算机应用研究》 CSCD 北大核心 2013年第3期715-719,共5页
针对传统的基于最近邻协同过滤推荐算法中计算相似度存在的缺陷,提出了一种基于二阶段相似度学习的协同过滤推荐算法,该算法旨在通过较少的迭代计算改善推荐算法性能。它以既约梯度法迭代寻优为主、最近邻算法为辅,通过邻居的海选和精选... 针对传统的基于最近邻协同过滤推荐算法中计算相似度存在的缺陷,提出了一种基于二阶段相似度学习的协同过滤推荐算法,该算法旨在通过较少的迭代计算改善推荐算法性能。它以既约梯度法迭代寻优为主、最近邻算法为辅,通过邻居的海选和精选,最终提高了相似度的计算精度,改善了误差性能。实验表明,在一定条件下该算法不仅在误差性能上优于传统的推荐算法,而且其算法收敛速度快,可实现相似度参数动态调整和分布式计算。 展开更多
关键词 二阶段 相似度学习 协同过滤 既约梯度法 K-最近邻算法
下载PDF
一种求解多峰函数优化问题的演化算法 被引量:3
6
作者 蒋忠樟 成浩 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2006年第3期335-339,共5页
针对演化计算产生新解无序的问题,提出了基于相似性的邻域搜索策略.利用邻域搜索,可以方便地建立自适应的新解产生机制.针对演化算法设计中存在的搜索效果和效率平衡问题,提出了利用适应值对个体进行分级的搜索策略.通过对个体的分级,... 针对演化计算产生新解无序的问题,提出了基于相似性的邻域搜索策略.利用邻域搜索,可以方便地建立自适应的新解产生机制.针对演化算法设计中存在的搜索效果和效率平衡问题,提出了利用适应值对个体进行分级的搜索策略.通过对个体的分级,可以区分个体在搜索过程中的职能:优秀的个体进行局部极小值的开采;其他的个体进行搜索空间的探索,以发现新的局部极小值.数值实验表明,新算法能有效处理低维多峰函数,能找到所有的全局最优解.对高维多峰函数,也能找到全局最优解. 展开更多
关键词 相似性学习 邻域搜索 演化算法
下载PDF
基于Siamese网络的矿物拉曼光谱识别 被引量:5
7
作者 吴承炜 史如晋 曾万聃 《激光与光电子学进展》 CSCD 北大核心 2020年第9期262-268,共7页
矿物分析在地质勘测及工程应用中都是一项极为关键的工作,在矿物分析中,相比于传统的物理方法和化学方法,拉曼光谱检测能提供更快速的定性定量分析,最重要的是,它对矿物的损伤可以忽略不计。而基于拉曼光谱的数据分析,传统的机器学习方... 矿物分析在地质勘测及工程应用中都是一项极为关键的工作,在矿物分析中,相比于传统的物理方法和化学方法,拉曼光谱检测能提供更快速的定性定量分析,最重要的是,它对矿物的损伤可以忽略不计。而基于拉曼光谱的数据分析,传统的机器学习方法效果并不理想,尤其在矿物种类极其庞大的情况下。为此,提出一种基于Siamese网络的相似性学习方法,采用Hungarian算法来优化负样本,与传统的机器学习算法相比,得到了鲁棒性最好的结果。Siamese网络计算出矿物之间的相似度,除了能对矿物进行识别,还可以在一定程度上为该矿物的替代材料提供参考。 展开更多
关键词 视觉 拉曼光谱 机器学习 Siamese网络 相似性学习 矿物分析
原文传递
使用视觉注意和多特征融合的手势检测与识别 被引量:5
8
作者 杨文姬 孔令富 《小型微型计算机系统》 CSCD 北大核心 2015年第3期610-615,共6页
手势检测和识别在手语识别和人机交互中具有广泛而重要的应用.提出一种新颖的手势检测和手势识别方法.该检测方法是基于视觉注意机制检测手势,其集成了多尺度全局区域颜色、纹理、运动和背景对比度,在此基础上融合了对象性度量先验.其次... 手势检测和识别在手语识别和人机交互中具有广泛而重要的应用.提出一种新颖的手势检测和手势识别方法.该检测方法是基于视觉注意机制检测手势,其集成了多尺度全局区域颜色、纹理、运动和背景对比度,在此基础上融合了对象性度量先验.其次,使用显著性、轮廓、局部二进制模式和梯度特征表示手势,然后采用基于度量的空间加权相似性方法融合上述4种特征和空间坐标用于确定两张图像间的相似性.最后,使用Ranking-Support Vector Machine分类器识别手势.本文设计了两个实验,一个是用于验证基于视觉注意的手势检测,另一个是用于手势识别.前者结果表明提出的手势检测方法能准确地的检测出手,能处理光照的变化和不均匀的光照.后者表明本文提出的手势识别方法优于线性和非线性方法,其识别率为96.84%,比线性和非线性回归方法分别高5.16%和2.53%. 展开更多
关键词 手势识别 手势检测 对象性度量 全局区域对比度 相似性学习
下载PDF
基于孪生检测网络的实时视频追踪算法 被引量:5
9
作者 邓杨 谢宁 杨阳 《计算机应用》 CSCD 北大核心 2019年第12期3440-3444,共5页
目前,在视频追踪领域中,大部分基于孪生网络的追踪算法只能对物体的中心点进行定位,而在定位快速形变的物体时会出现定位不准确的问题。为此,提出基于孪生检测网络的实时视频追踪算法--SiamRFC。SiamRFC算法可直接预测被追踪物体位置,... 目前,在视频追踪领域中,大部分基于孪生网络的追踪算法只能对物体的中心点进行定位,而在定位快速形变的物体时会出现定位不准确的问题。为此,提出基于孪生检测网络的实时视频追踪算法--SiamRFC。SiamRFC算法可直接预测被追踪物体位置,来应对快速形变的问题。首先,通过判断相似性来得到被追踪物体的中心点位置;然后,运用目标检测的思路,通过选取一系列的预选框来回归最优的位置。实验结果表明,所提SiamRFC算法在VOT2015|16|17的测试集上均有很好的表现。 展开更多
关键词 孪生网络 物体检测 实时视频追踪 相似性学习 卷积神经网络
下载PDF
基于相似性学习的三维模型最优视图选择算法 被引量:5
10
作者 刘志 冯毅攀 +1 位作者 潘翔 徐彩虹 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第7期918-924,共7页
针对已有最优视图度量难以适用于不同类型的三维模型,提出基于用户知识、在模型库中为各类模型建立最优视图样例,并在此基础上进行相似性学习,根据相似性度量获得输入模型最优视图的选择算法.首先采用AdaBoost算法对输入三维模型形状特... 针对已有最优视图度量难以适用于不同类型的三维模型,提出基于用户知识、在模型库中为各类模型建立最优视图样例,并在此基础上进行相似性学习,根据相似性度量获得输入模型最优视图的选择算法.首先采用AdaBoost算法对输入三维模型形状特征进行相似性学习,得到该模型的最优视图样例;然后将输入模型从不同视点得到的渲染视图和最优视图样例进行形状相似性分析,以相似度最高者作为输入模型的最优视图.实验结果表明,采用文中算法得到的最优视图不仅可以有效地逼近用户选择结果,而且具有较好的稳定性. 展开更多
关键词 三维模型 视图选择 相似性学习 最优视图样例
下载PDF
计算机视觉中相似度学习方法的研究进展 被引量:3
11
作者 王法强 张宏志 +2 位作者 王鹏 邓红 张大鹏 《智能计算机与应用》 2019年第1期149-152,158,共5页
相似度学习方法通过学习合适的相似度度量以改进模型的分类或聚类效果。现有的研究表明,相似度学习方法在很多计算机视觉问题中起到重要的作用。近年来随着数据规模的急剧增大和应用领域的多样化,相似度学习问题发展了很多新的研究领域... 相似度学习方法通过学习合适的相似度度量以改进模型的分类或聚类效果。现有的研究表明,相似度学习方法在很多计算机视觉问题中起到重要的作用。近年来随着数据规模的急剧增大和应用领域的多样化,相似度学习问题发展了很多新的研究领域。本文介绍了近年来相似度学习问题的研究进展和发展过程,包括从传统的二元组和三元组约束发展到新型相似度约束、从欧氏距离与马氏距离发展到新型相似度度量、从图像间的相似度学习发展到图像集之间的相似度学习、从单一模态相似度学习发展到跨模态相似度学习。最后本文展望了相似度学习未来可能的发展方向。 展开更多
关键词 相似度学习 距离度量学习 深度相似度学习
下载PDF
基于语义相似度的无监督图像哈希方法 被引量:4
12
作者 王伯伟 聂秀山 +1 位作者 马林元 尹义龙 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期41-48,共8页
哈希方法作为最近邻搜索中的一个重要算法,具有快速及低内存的优良特性,能够较好地解决现实图像数据库中存在的样本标签信息缺失、人工标注成本过高等问题,因此在图像检索领域得到广泛使用.提出一种基于语义相似度的无监督图像哈希方法... 哈希方法作为最近邻搜索中的一个重要算法,具有快速及低内存的优良特性,能够较好地解决现实图像数据库中存在的样本标签信息缺失、人工标注成本过高等问题,因此在图像检索领域得到广泛使用.提出一种基于语义相似度的无监督图像哈希方法.首先对原始图像进行语义聚类,然后基于图像的语义相似性,把原始图像特征映射到汉明空间;同时,为了增强哈希学习的鲁棒性,在所得到的目标函数中,采用了l2,p范数(0<p≤2)来代替l2范数进行哈希学习.通过在两个公共图像检索数据库CIFAR-10和NUS-WIDE的实验结果证明,与现有方法相比,本方法的平均精度均值提升了5%. 展开更多
关键词 语义相似度 无监督哈希 离散哈希 相似性学习
下载PDF
面向相似App推荐的列表式多核相似性学习算法 被引量:2
13
作者 卜宁 牛树梓 +1 位作者 马文静 龙国平 《计算机系统应用》 2017年第1期116-121,共6页
相似App推荐可以有效帮助用户发现其所感兴趣的App.与以往的相似性学习不同,相似App推荐场景主要面向的是排序问题.本文主要研究在排序场景下如何学习相似性函数.已有的工作仅关注绝对相似性或基于三元组的相似性.本文建模了列表式的相... 相似App推荐可以有效帮助用户发现其所感兴趣的App.与以往的相似性学习不同,相似App推荐场景主要面向的是排序问题.本文主要研究在排序场景下如何学习相似性函数.已有的工作仅关注绝对相似性或基于三元组的相似性.本文建模了列表式的相似性,并将三元组相似性与列表式相似性用统一的面向排序场景的相对相似性学习框架来描述,提出了基于列表的多核相似性学习算法SimListMKL.实验证明,该算法在真实的相似App推荐场景下性能优于已有的基于三元组相似性学习算法. 展开更多
关键词 相似App推荐 多核学习 相对相似性 相似性学习 列表式学习
下载PDF
基于深度学习的足球球员跟踪算法研究 被引量:3
14
作者 马月洁 冯爽 王永滨 《中国传媒大学学报(自然科学版)》 2018年第3期60-64,共5页
提出一种基于深度学习的足球球员跟踪方案:通过搭建全卷积孪生神经网络来提取足球比赛视频中球员丰富的视觉特征,并在大量的包含相似性物体的数据集上对网络进行训练,提高了算法辨别同队队员的能力。实验表明,该算法在足球领域取得了较... 提出一种基于深度学习的足球球员跟踪方案:通过搭建全卷积孪生神经网络来提取足球比赛视频中球员丰富的视觉特征,并在大量的包含相似性物体的数据集上对网络进行训练,提高了算法辨别同队队员的能力。实验表明,该算法在足球领域取得了较好效果,跟踪准确率达到90%以上。 展开更多
关键词 球员跟踪 孪生神经网络 相似性学习 深度学习
下载PDF
Learning an identity distinguishable space for large scale face recognition 被引量:2
15
作者 Yue Ting Wang Hongbo Cheng Shiduan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2018年第1期54-61,共8页
Implementing face recognition efficiently to real world large scale dataset presents great challenges to existing approaches. The method in this paper was proposed to learn an identity distinguishable space for large ... Implementing face recognition efficiently to real world large scale dataset presents great challenges to existing approaches. The method in this paper was proposed to learn an identity distinguishable space for large scale face recognition in MSR-Bing image recognition challenge (IRC). Firstly, a deep convolutional neural network (CNN) was used to optimize a 128 B embedding for large scale face retrieval. The embedding was trained via using triplets of aligned face patches from FaceScrub and CASIA-WebFace datasets. Secondly, the evaluation of MSR-Bing IRC was conducted according to a cross-domain retrieval scheme. The real-time retrieval in this paper was benefited from the K-means clustering performed on the feature space of training data. Furthermore, a large scale similarity learning (LSSL) was applied on the relevant face images for learning a better identity space. A novel method for selecting similar pairs was proposed for LSSL. Compared with many existing networks of face recognition, the proposed model was lightweight and the retrieval method was promising as well. 展开更多
关键词 face recognition convolutional neural network (CNN) triplet loss INCEPTION similarity learning
原文传递
一种相似性学习算法及其在人脸识别中的应用 被引量:3
16
作者 夏佩佩 张莉 《计算机工程》 CAS CSCD 2014年第6期175-179,共5页
传统的支持向量机相似性学习算法在构造样本对时,会考虑所有的原始训练样本,致使样本对空间和原样本空间呈平方关系,而过多的训练样本对会降低训练速度。为此,提出一种改进的支持向量机相似性学习算法,并应用到人脸识别中。引入二元样... 传统的支持向量机相似性学习算法在构造样本对时,会考虑所有的原始训练样本,致使样本对空间和原样本空间呈平方关系,而过多的训练样本对会降低训练速度。为此,提出一种改进的支持向量机相似性学习算法,并应用到人脸识别中。引入二元样本对方法构造样本对,采用K近邻算法减少不相似样本对的生成,从而加快支持向量机的训练速度,同时使用随机降维方法来降低人脸数据的维数。实验结果表明,与基于差空间样本对和差绝对值样本对的算法相比,该算法可获得更高的识别率。 展开更多
关键词 相似性学习 样本对 支持向量机 K近邻算法 随机降维 人脸识别
下载PDF
基于连续肯德尔相关系数学习相似度函数的图像检索方法 被引量:3
17
作者 黄伟 《江西师范大学学报(自然科学版)》 CAS 北大核心 2013年第3期263-267,共5页
提出了一种基于连续肯德尔相关系数学习图像间相似度函数和运用学习的相似度函数进行图像检索的方法.通过对500幅图像所组成的图像数据库以及和其他传统相似度函数学习方法在图像检索中检索效果的比较实验可以得出:该方法的图像检索效... 提出了一种基于连续肯德尔相关系数学习图像间相似度函数和运用学习的相似度函数进行图像检索的方法.通过对500幅图像所组成的图像数据库以及和其他传统相似度函数学习方法在图像检索中检索效果的比较实验可以得出:该方法的图像检索效果要优于其他相比较的传统方法. 展开更多
关键词 图像检索 相似度学习 连续肯德尔相关系数
下载PDF
一种多尺度相似性学习的目标跟踪算法研究 被引量:2
18
作者 刘松 张智杰 《光学与光电技术》 2022年第1期70-76,共7页
基于深度学习的目标跟踪算法由于其良好的性能已经成为目标跟踪领域的主流算法之一。其核心思想是进行前后帧的相似性学习从而完成模板帧与搜索帧的匹配。其中,相似性学习是影响跟踪算法性能的关键一环。以孪生网络的相似性学习为切入点... 基于深度学习的目标跟踪算法由于其良好的性能已经成为目标跟踪领域的主流算法之一。其核心思想是进行前后帧的相似性学习从而完成模板帧与搜索帧的匹配。其中,相似性学习是影响跟踪算法性能的关键一环。以孪生网络的相似性学习为切入点,对现有的深度互相关(DW-XCorr)的相似性学习方式进行改进,提出了一种多尺度相似性学习的目标跟踪算法。该算法在SiamRPN的基础网络框架下,构造多尺度互相关(Multi-Scale Cross Correlation,MS-XCorr)模块,对原有的互相关操作进行多尺度的改进,从而增加学习特征尺度的多样性,提高了跟踪网络相似性学习的效率,最终使得算法跟踪性能有进一步提升。在实验部分,将改进后的算法与其基线进行了对比实验,该算法在成功率(Success Rate)、精度(Precision)及平均精度(Norm Precision)上均有提升,成功率提高了4.3%,精度提高了4.4%,平均精度提高了4.0%。实验表明,多尺度互相关模块相较于深度互相关模块具有更强的相似性学习能力,提出的多尺度相似性学习的目标跟踪算法在目标光照、形态变化、遮挡以及干扰等复杂场景下具有更好的跟踪性能。 展开更多
关键词 深度学习 目标跟踪 相似性学习 多尺度互相关
原文传递
一种矩阵分解和相似度矩阵学习的多视图聚类算法 被引量:1
19
作者 王胜 苏艳苹 《郑州航空工业管理学院学报》 2023年第5期64-69,86,共7页
考虑到多视图数据之间的互补性和每个视图数据的高维度特性,提出了一种矩阵分解和相似度矩阵学习的多视图聚类算法。为了去除数据中存在的噪声,通过对每个视图的数据进行矩阵分解得到其潜在表示。最大化不同视图表示之间的独立性来得到... 考虑到多视图数据之间的互补性和每个视图数据的高维度特性,提出了一种矩阵分解和相似度矩阵学习的多视图聚类算法。为了去除数据中存在的噪声,通过对每个视图的数据进行矩阵分解得到其潜在表示。最大化不同视图表示之间的独立性来得到不同视图的互补信息。为了融合不同视图的潜在表示,最大化最终数据表示的相似度与潜在表示的相似度。采用了最大化熵正则来限制潜在相似度矩阵的值和各视图的权重。3个真实数据库的实验表明,与比较算法相比,本文的聚类算法准确率分别高15%、9%和25%。 展开更多
关键词 矩阵分解 多视图学习 相似度学习 聚类
下载PDF
基于可变形卷积的服装检索方法 被引量:2
20
作者 王振 全红艳 《计算机工程与科学》 CSCD 北大核心 2019年第9期1671-1678,共8页
传统的服装检索方法使用固定形状的感受野,当服装目标存在几何变形时无法有效地提取其特征。针对这个问题,提出基于可变形卷积和相似性学习的服装检索方法。首先,构建可变形卷积网络,自动学习服装特征的采样位置和服装图像的哈希编码;然... 传统的服装检索方法使用固定形状的感受野,当服装目标存在几何变形时无法有效地提取其特征。针对这个问题,提出基于可变形卷积和相似性学习的服装检索方法。首先,构建可变形卷积网络,自动学习服装特征的采样位置和服装图像的哈希编码;然后,级联相似性学习网络,度量哈希编码的相似性;最后,根据相似性评分产生检索结果。实验结果表明,该方法能够有效地提取存在几何变形的服装目标的特征,从而减少了图像背景特征的干扰,提高了检索模型的准确率。 展开更多
关键词 服装检索 可变形卷积 哈希编码 相似性学习
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部