聚类集成的目的是为了提高聚类结果的准确性、稳定性和鲁棒性.通过集成多个基聚类结果可以产生一个较优的结果.本文提出了一个基于密度峰值的聚类集成模型,主要完成三个方面的工作:1)在研究已有的各聚类集成算法和模型后发现各基聚类结...聚类集成的目的是为了提高聚类结果的准确性、稳定性和鲁棒性.通过集成多个基聚类结果可以产生一个较优的结果.本文提出了一个基于密度峰值的聚类集成模型,主要完成三个方面的工作:1)在研究已有的各聚类集成算法和模型后发现各基聚类结果可以用密度表示;2)使用改进的最大信息系数(Rapid computation of the maximal information coefficient,Rapid Mic)表示各基聚类结果之间的相关性,使用这种相关性来衡量原始数据在经过基聚类器聚类后相互之间的密度关系;3)改进密度峰值(Density peaks,DP)算法进行聚类集成.最后,使用一些标准数据集对所设计的模型进行评估.实验结果表明,相比经典的聚类集成模型,本文提出的模型聚类集成效果更佳.展开更多
为了提升传统随机森林算法的分类精度,首先对传统随机森林模型中的决策树根据分类性能评价指标AUC(area under curve)值进行降序排列,从中选取出AUC值高的决策树,计算这些决策树之间的相似度,并生成相似度矩阵;然后根据相似度矩阵对这...为了提升传统随机森林算法的分类精度,首先对传统随机森林模型中的决策树根据分类性能评价指标AUC(area under curve)值进行降序排列,从中选取出AUC值高的决策树,计算这些决策树之间的相似度,并生成相似度矩阵;然后根据相似度矩阵对这些决策树进行聚类。从每一类中选出一棵AUC最大的决策树组成新的随机森林模型,从而达到提升传统随机森林算法分类精度的目的。通过UCI(university of Californialrvine)数据集的实验表明,改进后的随机森林算法在分类精度上最大提高了2.91%。展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60875031(国家自然科学基金)the National Basic Research Program of China under Grant No.2007CB311002(国家重点基础研究发展计划(973))+2 种基金the Program for New Century Excellent Talents in University of china under Grant No.NECT-06-0078(新世纪优秀人才支持计划)the Research Fund for the Doctoral Program of Higher Education of the Ministry of Education of China under Grant No.20050004008(教育部高等学校博士学科点专项科研基金)the Fok Ying-Tbng Education Foundation for Young Teachers in the Higher Education Instirutions of China under Grant No.101068(霍英东教育基金会高等院校青年教师基金)
文摘聚类集成的目的是为了提高聚类结果的准确性、稳定性和鲁棒性.通过集成多个基聚类结果可以产生一个较优的结果.本文提出了一个基于密度峰值的聚类集成模型,主要完成三个方面的工作:1)在研究已有的各聚类集成算法和模型后发现各基聚类结果可以用密度表示;2)使用改进的最大信息系数(Rapid computation of the maximal information coefficient,Rapid Mic)表示各基聚类结果之间的相关性,使用这种相关性来衡量原始数据在经过基聚类器聚类后相互之间的密度关系;3)改进密度峰值(Density peaks,DP)算法进行聚类集成.最后,使用一些标准数据集对所设计的模型进行评估.实验结果表明,相比经典的聚类集成模型,本文提出的模型聚类集成效果更佳.
文摘为了提升传统随机森林算法的分类精度,首先对传统随机森林模型中的决策树根据分类性能评价指标AUC(area under curve)值进行降序排列,从中选取出AUC值高的决策树,计算这些决策树之间的相似度,并生成相似度矩阵;然后根据相似度矩阵对这些决策树进行聚类。从每一类中选出一棵AUC最大的决策树组成新的随机森林模型,从而达到提升传统随机森林算法分类精度的目的。通过UCI(university of Californialrvine)数据集的实验表明,改进后的随机森林算法在分类精度上最大提高了2.91%。