The nanoscale titania coated silica was prepared via a two-step precipitating approach, where the nanoscale silica nuclei were first prepared by passing an aqueous solution of sodium silicate through an ion-exchange r...The nanoscale titania coated silica was prepared via a two-step precipitating approach, where the nanoscale silica nuclei were first prepared by passing an aqueous solution of sodium silicate through an ion-exchange resin bed, then coated with the precipitation from hydrolyzed butyl titanate in an ethanol-hexane mixture at a low pH value in the presence of poly(ethylene oxide) polyamine salt(PPA) at a high temperature of 90 ℃. In the second-step precipitating process, the spontaneously precipitated titania shell on the silica nuclei was stabilized in the suspension solution with the help of the adsorption of PPA on the particles. A possible precipitating mechanism was suggested. Furthermore, the amorphous titania shell could undergo crystallization from the amorphous to the anatase structure at a high temperature of 650 ℃, and a further phase transition from the anatase to the rutile structure in the different sintering processes at a rising temperature of 750 ℃.展开更多
Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influen...Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influence of both natural processes and human activities on silica delivery to the estuary of the Huanghe River(Yellow River). Our results indicate that the concentrations of DSi in the river decreased significantly since 1986. Approximately 34% of dissolved silica was trapped in the basin between 1986 and 2010 due to a reduction of soil erosion. Phytoliths comprised 67.2%–96.3% of BSi, with the smoothing bar type being the dominant form. Concentrations of BSi are significantly higher in the Huanghe River compared to other major rivers throughout the world due to its high sediment yield. We also found that the ratios of BSi/(BSi+DSi) and BSi/SPM were approximately 0.5 and 0.003 at Lijin near the river mouth, indicating that BSi carried in suspension by the Huanghe River was an important component of the rivers silica load. Significant amounts of BSi were also composed of phytoliths in Bohai Sea sediments near the Huanghe River estuary with the smoothing bar form again being the most abundant. The relatively high specific fluxes of BSi in the Huanghe River reflect its high turbidity and high erosion rates in the basin. The high sediment load originating on the Loess Plateau is likely responsible for the higher BSi flux, in agreement with a general trend of increasing BSi flux with increasing sediment flux in global river systems. This study demonstrates that BSi transported by rivers can be composed largely of phytoliths originating from the erosion of topsoils. The flux of phytoliths in river's suspended sediment load may therefore represent a significant contribution to the biogeochemical cycle of silica in coastal waters.展开更多
基金Supported by the State Key L aboratory of Shanghai Institute of Ceram ics and State Key L aboratory of Surface Physicsin China
文摘The nanoscale titania coated silica was prepared via a two-step precipitating approach, where the nanoscale silica nuclei were first prepared by passing an aqueous solution of sodium silicate through an ion-exchange resin bed, then coated with the precipitation from hydrolyzed butyl titanate in an ethanol-hexane mixture at a low pH value in the presence of poly(ethylene oxide) polyamine salt(PPA) at a high temperature of 90 ℃. In the second-step precipitating process, the spontaneously precipitated titania shell on the silica nuclei was stabilized in the suspension solution with the help of the adsorption of PPA on the particles. A possible precipitating mechanism was suggested. Furthermore, the amorphous titania shell could undergo crystallization from the amorphous to the anatase structure at a high temperature of 650 ℃, and a further phase transition from the anatase to the rutile structure in the different sintering processes at a rising temperature of 750 ℃.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41106072,41376093,41206064)Natural Science Foundation of Shandong(Grant No.ZR2010DM006)
文摘Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influence of both natural processes and human activities on silica delivery to the estuary of the Huanghe River(Yellow River). Our results indicate that the concentrations of DSi in the river decreased significantly since 1986. Approximately 34% of dissolved silica was trapped in the basin between 1986 and 2010 due to a reduction of soil erosion. Phytoliths comprised 67.2%–96.3% of BSi, with the smoothing bar type being the dominant form. Concentrations of BSi are significantly higher in the Huanghe River compared to other major rivers throughout the world due to its high sediment yield. We also found that the ratios of BSi/(BSi+DSi) and BSi/SPM were approximately 0.5 and 0.003 at Lijin near the river mouth, indicating that BSi carried in suspension by the Huanghe River was an important component of the rivers silica load. Significant amounts of BSi were also composed of phytoliths in Bohai Sea sediments near the Huanghe River estuary with the smoothing bar form again being the most abundant. The relatively high specific fluxes of BSi in the Huanghe River reflect its high turbidity and high erosion rates in the basin. The high sediment load originating on the Loess Plateau is likely responsible for the higher BSi flux, in agreement with a general trend of increasing BSi flux with increasing sediment flux in global river systems. This study demonstrates that BSi transported by rivers can be composed largely of phytoliths originating from the erosion of topsoils. The flux of phytoliths in river's suspended sediment load may therefore represent a significant contribution to the biogeochemical cycle of silica in coastal waters.