期刊文献+
共找到688篇文章
< 1 2 35 >
每页显示 20 50 100
多尺度通道注意与孪生网络的目标跟踪算法 被引量:3
1
作者 王淑贤 葛海波 李文浩 《计算机工程与应用》 CSCD 北大核心 2023年第14期142-150,共9页
在全卷积分类和回归的Siamese目标跟踪算法的基础上,提出了一种融合多尺度通道注意力的目标跟踪算法(Siamese multi-scale channel attention,SiamMCA)。算法基于Siamese网络架构,以多尺度通道注意力融合改进后的ResNet50作为骨干网络... 在全卷积分类和回归的Siamese目标跟踪算法的基础上,提出了一种融合多尺度通道注意力的目标跟踪算法(Siamese multi-scale channel attention,SiamMCA)。算法基于Siamese网络架构,以多尺度通道注意力融合改进后的ResNet50作为骨干网络进行特征提取与增强,并利用深度互相关网络对特征图进行解码和跟踪,最终成功进行融合、分类和回归。SiamMCA通过充分利用多尺度通道注意力的语义信息整合功能,整合了空间信息和运动信息,提升了跟踪器的性能。最终分别在OTB100、VOT2016数据集上和LaSOT长期基准上的实验表明,SiamMCA与其他先进的跟踪器相比取得了更高的精度、成功率和性能表现,尤其是在快速运动、遮挡、相似性干扰、尺度变化等复杂场景中。 展开更多
关键词 siamese 多尺度 通道注意力 特征增强
下载PDF
结合注意力和改进样本选取方法的少样本高光谱分类孪生网络
2
作者 杨宇新 郭躬德 王晖 《计算机系统应用》 2024年第3期85-94,共10页
针对高光谱图像(hyperspectral image)样本人工标记困难导致的样本数量不足的问题,本文提出了一个结合注意力和空间邻域的少样本孪生网络算法.它首先对高光谱图像进行PCA预处理,实现数据降维;其次,对模型训练样本采用间隔采样和边缘采... 针对高光谱图像(hyperspectral image)样本人工标记困难导致的样本数量不足的问题,本文提出了一个结合注意力和空间邻域的少样本孪生网络算法.它首先对高光谱图像进行PCA预处理,实现数据降维;其次,对模型训练样本采用间隔采样和边缘采样的方式进行选取,以有效减少冗余信息;之后,Siamese network以大小不同的patch形式进行两两结合,构建出样本对作为训练集进行训练,不仅实现了数据增强的效果,还能在提取光谱信息特征的同时,充分提取目标像素光谱信息以及其周围邻域空间信息;最后,添加光谱维度的注意力模块以及空间维度的相似度度量模块,分别对光谱信息和空间邻域信息进行权重分布,以达到提升分类性能的目的.实验结果表明,本文提出的方法在部分公开数据集上对比常用方法取得了较好的实验效果. 展开更多
关键词 高光谱图像分类 siamese network 注意力机制 少样本学习 深度学习
下载PDF
面向航空发动机油路密封管件的高鲁棒性视觉定位算法研究
3
作者 崔俊佳 刘枭 +3 位作者 赖铭 王绍螺 蒋浩 李光耀 《航空制造技术》 CSCD 北大核心 2023年第14期136-142,共7页
航空航天行业零部件种类繁多、定制化程度高,难以进行定位夹具的开发。视觉定位技术是智能制造中的关键一环,该技术基于机器视觉确定工件位置,不需要定位夹具,能够被广泛运用于各种工况。但现有视觉定位算法只适用于少数种类的零件,泛... 航空航天行业零部件种类繁多、定制化程度高,难以进行定位夹具的开发。视觉定位技术是智能制造中的关键一环,该技术基于机器视觉确定工件位置,不需要定位夹具,能够被广泛运用于各种工况。但现有视觉定位算法只适用于少数种类的零件,泛用性不高。本文提出了一种基于YOLOv5s目标检测网络和Siamese孪生网络的新型视觉定位算法(YOLO–Siamese变化检测网络)。网络引入ConvDiff(卷积差分)模块来提升变化检测网络的特征提取效果,并采用半监督学习方法对模型进行训练。试验表明,在没有使用目标工件数据集的条件下,算法在验证集上的AP@0.5达到了99.3%,AP@0.5:0.95达到了89.6%,单帧推理时间为16.13 ms。该算法无需目标工件数据、定位精度高、运算速度快,提高了视觉定位算法的鲁棒性和泛用性。 展开更多
关键词 变化检测网络 视觉定位 机器视觉 YOLO siamese 孪生网络
下载PDF
Research on Vector Road Data Matching Method Based on Deep Learning
4
作者 Lin Zhao Yanru Liu +3 位作者 Yuefeng Lu Ying Sun Jing Li Kaizhong Yao 《Journal of Applied Mathematics and Physics》 2023年第1期303-315,共13页
Most of the existing vector data matching methods use traditional feature geometry attribute features to match, however, many of the similarity indicators are not suitable for cross-scale data, resulting in less accur... Most of the existing vector data matching methods use traditional feature geometry attribute features to match, however, many of the similarity indicators are not suitable for cross-scale data, resulting in less accuracy in identifying objects. In order to solve this problem effectively, a deep learning model for vector road data matching is proposed based on siamese neural network and VGG16 convolutional neural network, and matching experiments are carried out. Experimental results show that the proposed vector road data matching model can achieve an accuracy of more than 90% under certain data support and threshold conditions. 展开更多
关键词 Deep Learning Vector Matching SIMILARITY VGG16 siamese Network
下载PDF
Open World Recognition of Communication Jamming Signals 被引量:2
5
作者 Yan Tang Zhijin Zhao +4 位作者 Jie Chen Shilian Zheng Xueyi Ye Caiyi Lou Xiaoniu Yang 《China Communications》 SCIE CSCD 2023年第6期199-214,共16页
To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming c... To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming classes,and unsupervised cluseter new classes.The network of SNN-OWR is trained supervised with paired input data consisting of two samples from a known dataset.On the one hand,the network is required to have the ability to distinguish whether two samples are from the same class.On the other hand,the latent distribution of known class is forced to approach their own unique Gaussian distribution,which is prepared for the subsequent open set testing.During the test,the unknown class detection process based on Gaussian probability density function threshold is designed,and an unsupervised clustering algorithm of the unknown jamming is realized by using the prior knowledge of known classes.The simulation results show that when the jamming-to-noise ratio is more than 0d B,the accuracy of SNN-OWR algorithm for known jamming classes recognition,unknown jamming detection and unsupervised clustering of unknown jamming is about 95%.This indicates that the SNN-OWR algorithm can make the effect of the recognition of unknown jamming be almost the same as that of known jamming. 展开更多
关键词 communication jamming signals siamese Neural Network Open World Recognition unsupervised clustering of new jamming type Gaussian probability density function
下载PDF
Malware Detection Using Dual Siamese NetworkModel
6
作者 ByeongYeol An JeaHyuk Yang +1 位作者 Seoyeon Kim Taeguen Kim 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期563-584,共22页
This paper proposes a new approach to counter cyberattacks using the increasingly diverse malware in cyber security.Traditional signature detection methods that utilize static and dynamic features face limitations due... This paper proposes a new approach to counter cyberattacks using the increasingly diverse malware in cyber security.Traditional signature detection methods that utilize static and dynamic features face limitations due to the continuous evolution and diversity of new malware.Recently,machine learning-based malware detection techniques,such as Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN),have gained attention.While these methods demonstrate high performance by leveraging static and dynamic features,they are limited in detecting new malware or variants because they learn based on the characteristics of existing malware.To overcome these limitations,malware detection techniques employing One-Shot Learning and Few-Shot Learning have been introduced.Based on this,the Siamese Network,which can effectively learn from a small number of samples and perform predictions based on similarity rather than learning the characteristics of the input data,enables the detection of new malware or variants.We propose a dual Siamese network-based detection framework that utilizes byte images converted frommalware binary data to grayscale,and opcode frequency-based images generated after extracting opcodes and converting them into 2-gramfrequencies.The proposed framework integrates two independent Siamese network models,one learning from byte images and the other from opcode frequency-based images.The detection models trained on the different kinds of images generated separately apply the L1 distancemeasure to the output vectors themodels generate,calculate the similarity,and then apply different weights to each model.Our proposed framework achieved a malware detection accuracy of 95.9%and 99.83%in the experimentsusingdifferentmalware datasets.The experimental resultsdemonstrate that ourmalware detection model can effectively detect malware by utilizing two different types of features and employing the dual Siamese network-based model. 展开更多
关键词 siamese network malware detection few-shot learning
下载PDF
Colorectal Cancer Segmentation Algorithm Based on Deep Features from Enhanced CT Images
7
作者 Shi Qiu Hongbing Lu +2 位作者 Jun Shu Ting Liang Tao Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第8期2495-2510,共16页
Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly... Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy. 展开更多
关键词 Colorectal cancer enhanced CT MULTI-SCALE siamese network SEGMENTATION
下载PDF
Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
8
作者 Wei Bao Jian Dong +2 位作者 Yang Xu Yuanyuan Yang Xiaoke Qi 《Data Intelligence》 EI 2024年第2期488-503,共16页
Low-resource text plagiarism detection faces a significant challenge due to the limited availability of labeled data for training.This task requires the development of sophisticated algorithms capable of identifying s... Low-resource text plagiarism detection faces a significant challenge due to the limited availability of labeled data for training.This task requires the development of sophisticated algorithms capable of identifying similarities and differences in texts,particularly in the realm of semantic rewriting and translation-based plagiarism detection.In this paper,we present an enhanced attentive Siamese Long Short-Term Memory(LSTM)network designed for Tibetan-Chinese plagiarism detection.Our approach begins with the introduction of translation-based data augmentation,aimed at expanding the bilingual training dataset.Subsequently,we propose a pre-detection method leveraging abstract document vectors to enhance detection efficiency.Finally,we introduce an improved attentive Siamese LSTM network tailored for Tibetan-Chinese plagiarism detection.We conduct comprehensive experiments to showcase the effectiveness of our proposed plagiarism detection framework. 展开更多
关键词 Text plagiarism detection Low resource siamese Long Short-Term Memory Tibetan-Chinese
原文传递
基于信息瓶颈孪生自编码网络的红外与可见光图像融合
9
作者 马路遥 罗晓清 张战成 《红外技术》 CSCD 北大核心 2024年第3期314-324,共11页
红外与可见光图像融合方法中存在信息提取和特征解耦不充分、可解释性较低等问题,为了充分提取并融合源图像有效信息,本文提出了一种基于信息瓶颈孪生自编码网络的红外与可见光图像融合方法(DIBF:Double Information Bottleneck Fusion... 红外与可见光图像融合方法中存在信息提取和特征解耦不充分、可解释性较低等问题,为了充分提取并融合源图像有效信息,本文提出了一种基于信息瓶颈孪生自编码网络的红外与可见光图像融合方法(DIBF:Double Information Bottleneck Fusion)。该方法通过在孪生分支上构建信息瓶颈模块实现互补特征与冗余特征的解耦,进而将互补信息的表达过程对应于信息瓶颈前半部分的特征拟合过程,将冗余特征的压缩过程对应于信息瓶颈后半部分的特征压缩过程,巧妙地将图像融合中信息提取与融合表述为信息瓶颈权衡问题,通过寻找信息最优表达来实现融合。在信息瓶颈模块中,网络通过训练得到特征的信息权重图,并依据信息权重图,使用均值特征对冗余特征进行压缩,同时通过损失函数促进互补信息的表达,压缩与表达两部分权衡优化同步进行,冗余信息和互补信息也在此过程中得到解耦。在融合阶段,将信息权重图应用在融合规则中,提高了融合图像的信息丰富性。通过在标准图像TNO数据集上进行主客观实验,与传统和近来融合方法进行比较分析,结果显示本文方法能有效融合红外与可见光图像中的有用信息,在视觉感知和定量指标上均取得较好的效果。 展开更多
关键词 信息瓶颈 孪生自编码 解耦表征 红外与可见光 图像融合
下载PDF
Template-guided frequency attention and adaptive cross-entropy loss for UAV visual tracking 被引量:1
10
作者 Yuanliang XUE Guodong JIN +2 位作者 Tao SHEN Lining TAN Lianfeng WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期299-312,共14页
This paper addresses the problem of visual object tracking for Unmanned Aerial Vehicles(UAVs).Most Siamese trackers are used to regard object tracking as classification and regression problems.However,it is difficult ... This paper addresses the problem of visual object tracking for Unmanned Aerial Vehicles(UAVs).Most Siamese trackers are used to regard object tracking as classification and regression problems.However,it is difficult for these trackers to accurately classify in the face of similar objects,background clutters and other common challenges in UAV scenes.So,a reliable classifier is the key to improving UAV tracking performance.In this paper,a simple yet efficient tracker following the basic architecture of the Siamese neural network is proposed,which improves the classification ability from three stages.First,the frequency channel attention module is introduced to enhance the target features via frequency domain learning.Second,a template-guided attention module is designed to promote information exchange between the template branch and the search branch,which can get reliable classification response maps.Third,adaptive cross-entropy loss is proposed to make the tracker focus on hard samples that contribute more to the training process,solving the data imbalance between positive and negative samples.To evaluate the performance of the proposed tracker,comprehensive experiments are conducted on two challenging aerial datasets,including UAV123 and UAVDT.Experimental results demonstrate that the proposed tracker achieves favorable tracking performances in aerial benchmarks beyond 41 frames/s.We conducted experiments in real UAV scenes to further verify the efficiency of our tracker in the real world. 展开更多
关键词 Object tracking Unmanned Aerial Vehicle(UAV) Deep learning siamese neural network
原文传递
Siamese Dense Pixel-Level Fusion Network for Real-Time UAV Tracking 被引量:1
11
作者 Zhenyu Huang Gun Li +4 位作者 Xudong Sun Yong Chen Jie Sun Zhangsong Ni Yang Yang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3219-3238,共20页
Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.Howev... Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.However,most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational resources of UAVs.To meet the tracking precision and real-time requirements,this paper proposes a Siamese dense pixel-level network for UAV object tracking named SiamDPL.Specifically,the Siamese network extracts features of the search region and the template region through a parameter-shared backbone network,then performs correlationmatching to obtain the candidate regionwith high similarity.To improve the matching effect of template and search features,this paper designs a dense pixel-level feature fusion module to enhance the matching ability by pixel-wise correlation and enrich the feature diversity by dense connection.An attention module composed of self-attention and channel attention is introduced to learn global context information and selectively emphasize the target feature region in the spatial and channel dimensions.In addition,a target localization module is designed to improve target location accuracy.Compared with other advanced trackers,experiments on two public benchmarks,which are UAV123@10fps and UAV20L fromthe unmanned air vehicle123(UAV123)dataset,show that SiamDPL can achieve superior performance and low complexity with a running speed of 100.1 fps on NVIDIA TITAN RTX. 展开更多
关键词 siamese network UAV object tracking dense pixel-level feature fusion attention module target localization
下载PDF
基于CNN的改进行人重识别技术 被引量:2
12
作者 熊炜 冯川 +3 位作者 熊子婕 王娟 刘敏 曾春艳 《计算机工程与科学》 CSCD 北大核心 2019年第4期665-672,共8页
针对行人重识别研究中训练样本的不足,为提高识别精度及泛化能力,提出一种基于卷积神经网络的改进行人重识别方法。首先对训练数据集进行扩充,使用生成对抗网络无监督学习方法生成无标签图像;然后与原数据集联合作半监督卷积神经网络训... 针对行人重识别研究中训练样本的不足,为提高识别精度及泛化能力,提出一种基于卷积神经网络的改进行人重识别方法。首先对训练数据集进行扩充,使用生成对抗网络无监督学习方法生成无标签图像;然后与原数据集联合作半监督卷积神经网络训练,通过构建一个Siamese网络,结合分类模型和验证模型的特点进行训练;最后加入无标签图像类别分布方法,计算交叉熵损失来进行相似度量。实验结果表明,在Market-1501、CUHK03和DukeMTMC-reID数据集上,该方法相比原有的Siamese方法在Rank-1和mAP等性能指标上有近3~5个百分点的提升。当样本较少时,该方法具有一定应用价值。 展开更多
关键词 行人重识别 卷积神经网络 生成对抗网络 交叉熵 siamese
下载PDF
基于深度卷积网络的非接触式掌纹识别与验证 被引量:1
13
作者 许赫庭 木特力甫·马木提 +2 位作者 阿力木江·艾沙 努尔毕亚·亚地卡尔 库尔班·吾布力 《东北师大学报(自然科学版)》 CAS 北大核心 2022年第4期93-99,共7页
针对非接触式掌纹图像存在手姿态、光照等干扰因素的问题,提出了使用深度卷积网络来提取非接触式掌纹特征的识别方法,对不同网络提取非接触式掌纹特征的性能进行了验证.为了提高实用性,避免非接触式掌纹验证前的ROI提取操作,提出了基于S... 针对非接触式掌纹图像存在手姿态、光照等干扰因素的问题,提出了使用深度卷积网络来提取非接触式掌纹特征的识别方法,对不同网络提取非接触式掌纹特征的性能进行了验证.为了提高实用性,避免非接触式掌纹验证前的ROI提取操作,提出了基于Siamese Network的非接触式掌纹验证方法.选用了ResNet、DenseNet、MobileNetV2和RegNet 4个卷积神经网络模型,在IITD、Tongji和MPD 3个非接触式掌纹数据集上做了非接触式掌纹识别的评估实验,在IITD数据集上进行了训练和验证.MobileNetV2在IITD数据集上的收敛速度最快,RegNet在Tongji、MPD两个数据集上的收敛速度明显快于另外3个网络.RegNet在3个数据集上的识别率均最高,且较传统方法有所提高.实验结果表明,用深度卷积网络提取非接触式掌纹特征的方法有更好的识别结果.基于Siamese Network的非接触式掌纹验证方法对自然场景下的掌纹图像有较好的验证结果,且对光照和手姿态具有一定的鲁棒性. 展开更多
关键词 卷积神经网络 掌纹识别 掌纹验证 非接触式 迁移学习 siamese Network
下载PDF
GLABROUS INFLORESCENCE STEMS regulates trichome branching by genetically interacting with SIM in Arabidopsis 被引量:2
14
作者 Li-li SUN Zhong-jing ZHOU +5 位作者 Li-jun AN Yan AN Yong-qin ZHAO Xiao-fang MENG Clare STEELE-KING Yin-bo GAN 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2013年第7期563-569,共7页
Arabidopsis trichomes are large branched single cells that protrude from the epidermis. The first mor- phological indication of trichome development is an increase in nuclear content resulting from an initial cycle of... Arabidopsis trichomes are large branched single cells that protrude from the epidermis. The first mor- phological indication of trichome development is an increase in nuclear content resulting from an initial cycle of endoreduplication. Our previous study has shown that the C2H2 zinc finger protein GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome initiation in the inflorescence organ and for trichome branching in response to gibberellic acid signaling, although GIS gene does not play a direct role in regulating trichome cell division. Here, we describe a novel role of GIS, controlling trichome cell division indirectly by interacting genetically with a key endoreduplication regulator SIAMESE (SIM). Our molecular and genetic studies have shown that GIS might indireclty control cell division and trichome branching by acting downstream of SIM. A loss of function mutation of SIM signficantly reduced the expression of GIS. Futhermore, the overexpression of GIS rescued the trichome cluster cell phenotypes of sim mutant. The gain or loss of function of GIS had no significant effect on the expression of SIM. These results suggest that GIS may play an indirect role in regulating trichome cell division by genetically interacting with SIM. 展开更多
关键词 Arabidopsis thaliana GLABROUS INFLORESCENCE STEMS (GIS) ENDOREDUPLICATION siamese (SIM) Trichome branching Genetic interaction
原文传递
基于Siamese LSTM的中文多文档自动文摘模型 被引量:2
15
作者 龚永罡 王嘉欣 +1 位作者 廉小亲 裴晨晨 《计算机应用与软件》 北大核心 2021年第3期287-290,326,共5页
在文本信息数量迅速增长的环境下,为提升阅读效率,提出一种基于深度学习的多文档自动文本摘要模型。在传统文摘模型的基础上将Siamese LSTM深度学习网络应用到文本相似度计算中,计算曼哈顿距离来表征文本相似度,并采用去除停用词的方法... 在文本信息数量迅速增长的环境下,为提升阅读效率,提出一种基于深度学习的多文档自动文本摘要模型。在传统文摘模型的基础上将Siamese LSTM深度学习网络应用到文本相似度计算中,计算曼哈顿距离来表征文本相似度,并采用去除停用词的方法改进该网络模型以提升计算效率。实验结果表明,使用Siamese LSTM与传统余弦相似度等方法相比,生成的文摘在语义方面更贴近主题,质量更高,整个文摘系统的工作效率也显著提升。 展开更多
关键词 中文自动文摘 siamese LSTM 自然语言处理 深度学习
下载PDF
Electromyogram Based Personal Recognition Using Attention Mechanism for IoT Security
16
作者 Jin Su Kim Sungbum Pan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1663-1678,共16页
As Internet of Things(IoT)technology develops,integrating network functions into diverse equipment introduces new challenges,particularly in dealing with counterfeit issues.Over the past few decades,research efforts h... As Internet of Things(IoT)technology develops,integrating network functions into diverse equipment introduces new challenges,particularly in dealing with counterfeit issues.Over the past few decades,research efforts have focused on leveraging electromyogram(EMG)for personal recognition,aiming to address security concerns.However,obtaining consistent EMG signals from the same individual is inherently challenging,resulting in data irregularity issues and consequently decreasing the accuracy of personal recognition.Notably,conventional studies in EMG-based personal recognition have overlooked the issue of data irregularities.This paper proposes an innovative approach to personal recognition that combines a siamese fusion network with an auxiliary classifier,effectively mitigating the impact of data irregularities in EMG-based recognition.The proposed method employs empirical mode decomposition(EMD)to extract distinctive features.The model comprises two sub-networks designed to follow the siamese network architecture and a decision network integrated with the novel auxiliary classifier,specifically designed to address data irregularities.The two sub-networks sharing a weight calculate the compatibility function.The auxiliary classifier collaborates with a neural network to implement an attention mechanism.The attention mechanism using the auxiliary classifier solves the data irregularity problem by improving the importance of the EMG gesture section.Experimental results validated the efficacy of the proposed personal recognition method,achieving a remarkable 94.35%accuracy involving 100 subjects from the multisession CU_sEMG database(DB).This performance outperforms the existing approaches by 3%,employing auxiliary classifiers.Furthermore,an additional experiment yielded an improvement of over 0.85%of Ninapro DB,3%of CU_sEMG DB compared to the existing EMG-based recognition methods.Consequently,the proposed personal recognition using EMG proves to secure IoT devices,offering robustness against data irregularities. 展开更多
关键词 Personal recognition ELECTROMYOGRAM siamese network auxiliary classifier
下载PDF
SiamDLA: Dynamic Label Assignment for Siamese Visual Tracking
17
作者 Yannan Cai Ke Tan Zhenzhong Wei 《Computers, Materials & Continua》 SCIE EI 2023年第4期1621-1640,共20页
Label assignment refers to determining positive/negative labels foreach sample to supervise the training process. Existing Siamese-based trackersprimarily use fixed label assignment strategies according to human prior... Label assignment refers to determining positive/negative labels foreach sample to supervise the training process. Existing Siamese-based trackersprimarily use fixed label assignment strategies according to human priorknowledge;thus, they can be sensitive to predefined hyperparameters and failto fit the spatial and scale variations of samples. In this study, we first developa novel dynamic label assignment (DLA) module to handle the diverse datadistributions and adaptively distinguish the foreground from the backgroundbased on the statistical characteristics of the target in visual object tracking.The core of DLA module is a two-step selection mechanism. The first stepselects candidate samples according to the Euclidean distance between trainingsamples and ground truth, and the second step selects positive/negativesamples based on the mean and standard deviation of candidate samples.The proposed approach is general-purpose and can be easily integrated intoanchor-based and anchor-free trackers for optimal sample-label matching.According to extensive experimental findings, Siamese-based trackers withDLA modules can refine target locations and outperformbaseline trackers onOTB100, VOT2019, UAV123 and LaSOT. Particularly, DLA-SiamRPN++improves SiamRPN++ by 1% AUC and DLA-SiamCAR improves Siam-CAR by 2.5% AUC on OTB100. Furthermore, hyper-parameters analysisexperiments show that DLA module hardly increases spatio-temporal complexity,the proposed approach maintains the same speed as the originaltracker without additional overhead. 展开更多
关键词 siamese network label assignment single object tracking anchorbased anchor-free
下载PDF
Vision-based measuring method for individual cow feed intake using depth images and a Siamese network
18
作者 Xinjie Wang Baisheng Dai +3 位作者 Xiaoli Wei Weizheng Shen Yonggen Zhang Benhai Xiong 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期233-239,共7页
Feed intake is an important indicator to reflect the production performance and disease risk of dairy cows,which can also evaluate the utilization rate of pasture feed.To achieve an automatic and non-contact measureme... Feed intake is an important indicator to reflect the production performance and disease risk of dairy cows,which can also evaluate the utilization rate of pasture feed.To achieve an automatic and non-contact measurement of feed intake,this paper proposes a method for measuring the feed intake of cows based on computer vision technology with a Siamese network and depth images.An automated data acquisition system was first designed to collect depth images of feed piles and constructed a dataset with 24150 samples.A deep learning model based on the Siamese network was then constructed to implement non-contact measurement of feed intake for dairy cows by training with collected data.The experimental results show that the mean absolute error(MAE)and the root mean square error(RMSE)of this method are 0.100 kg and 0.128 kg in the range of 0-8.2 kg respectively,which outperformed existing works.This work provides a new idea and technology for the intelligent measuring of dairy cow feed intake. 展开更多
关键词 computer vision siamese network cow feed intake depth image precision livestock farming
原文传递
Improved Siamese Palmprint Authentication Using Pre-Trained VGG16-Palmprint and Element-Wise Absolute Difference
19
作者 Mohamed Ezz Waad Alanazi +3 位作者 Ayman Mohamed Mostafa Eslam Hamouda Murtada K.Elbashir Meshrif Alruily 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2299-2317,共19页
Palmprint identification has been conducted over the last two decades in many biometric systems.High-dimensional data with many uncorrelated and duplicated features remains difficult due to several computational compl... Palmprint identification has been conducted over the last two decades in many biometric systems.High-dimensional data with many uncorrelated and duplicated features remains difficult due to several computational complexity issues.This paper presents an interactive authentication approach based on deep learning and feature selection that supports Palmprint authentication.The proposed model has two stages of learning;the first stage is to transfer pre-trained VGG-16 of ImageNet to specific features based on the extraction model.The second stage involves the VGG-16 Palmprint feature extraction in the Siamese network to learn Palmprint similarity.The proposed model achieves robust and reliable end-to-end Palmprint authentication by extracting the convolutional features using VGG-16 Palmprint and the similarity of two input Palmprint using the Siamese network.The second stage uses the CASIA dataset to train and test the Siamese network.The suggested model outperforms comparable studies based on the deep learning approach achieving accuracy and EER of 91.8%and 0.082%,respectively,on the CASIA left-hand images and accuracy and EER of 91.7%and 0.084,respectively,on the CASIA right-hand images. 展开更多
关键词 Palmprint authentication transfer learning feature extraction CLASSIFICATION VGG-16 and siamese network
下载PDF
基于上下文感知与多尺度注意力的遥感变化检测
20
作者 董晨 郑禄 +1 位作者 于舒 饶白云 《软件导刊》 2023年第11期65-70,共6页
遥感图像中存在大小不一的地物,因此具有多尺度特性。现有变化检测方法大多采用多尺度分割以获得更完整、丰富的局部特征,但忽略了非局部位置特征(全局上下文信息)的重要性,导致提取特征差异化表示较弱。为了解决该问题,提出一个基于上... 遥感图像中存在大小不一的地物,因此具有多尺度特性。现有变化检测方法大多采用多尺度分割以获得更完整、丰富的局部特征,但忽略了非局部位置特征(全局上下文信息)的重要性,导致提取特征差异化表示较弱。为了解决该问题,提出一个基于上下文感知与多尺度注意力的孪生网络SPAN。在特征提取模块,使用孪生金字塔结构提取不同尺度的特征进行融合以获取鲁棒性更强的特征;在注意力增强模块,引入一个结合全局上下文的金字塔分割注意力模块PSG,以进一步提取目标特征并增强差异化表示。实验表明,所提模型相较于现有模型,在变化检测标准数据集CDD和LEVIR-CD上的F1分别达到0.944、0.812。消融实验表明,PSG相较于传统的多尺度注意力,能充分提取具有判别性的特征,证明了全局上下文信息对变化检测任务的重要性。 展开更多
关键词 变化检测 孪生 多尺度 注意力 全局上下文
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部