期刊文献+

Improved Siamese Palmprint Authentication Using Pre-Trained VGG16-Palmprint and Element-Wise Absolute Difference

下载PDF
导出
摘要 Palmprint identification has been conducted over the last two decades in many biometric systems.High-dimensional data with many uncorrelated and duplicated features remains difficult due to several computational complexity issues.This paper presents an interactive authentication approach based on deep learning and feature selection that supports Palmprint authentication.The proposed model has two stages of learning;the first stage is to transfer pre-trained VGG-16 of ImageNet to specific features based on the extraction model.The second stage involves the VGG-16 Palmprint feature extraction in the Siamese network to learn Palmprint similarity.The proposed model achieves robust and reliable end-to-end Palmprint authentication by extracting the convolutional features using VGG-16 Palmprint and the similarity of two input Palmprint using the Siamese network.The second stage uses the CASIA dataset to train and test the Siamese network.The suggested model outperforms comparable studies based on the deep learning approach achieving accuracy and EER of 91.8%and 0.082%,respectively,on the CASIA left-hand images and accuracy and EER of 91.7%and 0.084,respectively,on the CASIA right-hand images.
出处 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2299-2317,共19页 计算机系统科学与工程(英文)
基金 This work was funded by the Deanship of Scientific Research at Jouf University under Grant No.(DSR-2022-RG-0104).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部