期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
基于支持向量机回归的短时交通流预测模型 被引量:90
1
作者 傅贵 韩国强 +1 位作者 逯峰 许子鑫 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第9期71-76,共6页
将交通流预测的理论和方法引入交通控制系统,可提高交通控制系统对交通流变化的自适应能力.为此,文中通过引入核函数把短时交通流预测问题转化为高维空间中的线性回归问题,提出了基于支持向量机回归的短时交通流预测模型,并利用广州市... 将交通流预测的理论和方法引入交通控制系统,可提高交通控制系统对交通流变化的自适应能力.为此,文中通过引入核函数把短时交通流预测问题转化为高维空间中的线性回归问题,提出了基于支持向量机回归的短时交通流预测模型,并利用广州市交通流检测系统的数据进行实验.结果表明,文中模型的预测结果与实际数据相吻合,预测误差小于基于卡尔曼滤波的预测方法,从而验证了该模型的可行性和有效性. 展开更多
关键词 交通控制 短时交通流 预测模型 机器学习 支持向量机回归
下载PDF
短时交通流预测模型的分析与评价 被引量:43
2
作者 王正武 黄中祥 《系统工程》 CSCD 北大核心 2003年第6期97-100,共4页
从短时交通流预测定义出发 ,介绍短时交通流预测的原理及预测模型应具有的特性 ,重点介绍几种预测模型 ,对其建模的理论基础、特点及其可行性、有效性进行分析 ,并比较和评价各类预测模型。
关键词 交通管理系统 短时交通流预测模型 评价 交通控制系统
下载PDF
基于相空间重构的短时交通流预测研究 被引量:26
3
作者 宗春光 宋靖雁 +1 位作者 任江涛 胡坚明 《公路交通科技》 CAS CSCD 北大核心 2003年第4期71-75,共5页
短时交通流预测在城市交通控制和管理中起着十分重要的作用。本文通过分析短时交通流量数据在时间序列上的特点 ,引入混沌理论的分析方法 ,从非线性时间序列预测的角度对交通流量预测进行了研究。通过计算交通流系统相空间重构参数 ,给... 短时交通流预测在城市交通控制和管理中起着十分重要的作用。本文通过分析短时交通流量数据在时间序列上的特点 ,引入混沌理论的分析方法 ,从非线性时间序列预测的角度对交通流量预测进行了研究。通过计算交通流系统相空间重构参数 ,给出了一种基于相空间重构理论的局部预测方法 ,对城市道路路段交通流量进行短时预测 。 展开更多
关键词 短时交通流 相空间重构 预测 混沌
下载PDF
基于混沌和RBF神经网络的短时交通流量预测 被引量:39
4
作者 张玉梅 曲仕茹 温凯歌 《系统工程》 CSCD 北大核心 2007年第11期26-30,共5页
针对传统的应用数学模型方法在短时交通流预测精度和实时性方面存在的问题,论文从非线性时间序列的角度对短时交通流量预测进行探讨,提出采用基于混沌理论的RBF神经网络预测方法。首先在采用小数据量的Lyapunav指数计算方法判定交通流... 针对传统的应用数学模型方法在短时交通流预测精度和实时性方面存在的问题,论文从非线性时间序列的角度对短时交通流量预测进行探讨,提出采用基于混沌理论的RBF神经网络预测方法。首先在采用小数据量的Lyapunav指数计算方法判定交通流存在混沌的前提下,对交通流量数据进行相空间重构。构建了RBF神经网络,并对模拟产生的Lorenz和Rossler混沌时间序列数据以及实际采集的高速公路交通流量数据进行了仿真研究。结果表明,该方法对模拟产生的混沌时间序列具有很好的预测效果,在交通流量的短时预测上也具有较高的预测精度。 展开更多
关键词 短时交通流量 预测 混沌 RBF神经网络 相空间重构
下载PDF
短时交通流量两种预测方法的研究 被引量:20
5
作者 田晶 杨玉珍 陈阳舟 《公路交通科技》 CAS CSCD 北大核心 2006年第4期103-106,共4页
实时、准确的完成短时交通流量预测是实现交通控制与诱导的关键。采用基于L-M算法的BP神经网络预测方法和基于混沌时间序列的预测方法对短时交通流量时间序列进行了预测研究,给出两种方法的基本原理及具体的预测步骤,并对一组实际的流... 实时、准确的完成短时交通流量预测是实现交通控制与诱导的关键。采用基于L-M算法的BP神经网络预测方法和基于混沌时间序列的预测方法对短时交通流量时间序列进行了预测研究,给出两种方法的基本原理及具体的预测步骤,并对一组实际的流量数据进行了预测。仿真结果表明:两种方法都能较准确的预测交通流量,但混沌时间序列方法的实时性更好一些,更适合于预测短时交通流量。 展开更多
关键词 短时交通流量 预测 神经网络 L-M算法 混沌时间序列
下载PDF
基于非参数回归的快速路行程速度短期预测算法 被引量:17
6
作者 翁剑成 荣建 +1 位作者 任福田 魏中华 《公路交通科技》 CAS CSCD 北大核心 2007年第3期93-97,106,共6页
基于北京市快速路上的检测器所采集的历史数据,经过数据筛选,剔除判别,小波滤噪平稳处理,聚类分析等过程,建立了交通状态演变系列的历史样本数据库。基于所构建的历史数据库,通过数值试验,确定了状态向量、距离匹配原则,K近邻值等参量,... 基于北京市快速路上的检测器所采集的历史数据,经过数据筛选,剔除判别,小波滤噪平稳处理,聚类分析等过程,建立了交通状态演变系列的历史样本数据库。基于所构建的历史数据库,通过数值试验,确定了状态向量、距离匹配原则,K近邻值等参量,构建了一种基于K近邻的非参数回归短时交通预测模型,实现了对路段行程速度的短时预测。最后,利用随机选取的历史数据系列对预测模型的精度进行了检验。结果表明,预测算法的精度可以达到90%以上,可以很好地满足ITS应用系统对于交通预测数据的精度要求。 展开更多
关键词 智能交通系统 短时交通流预测 K近邻 非参数回归 行程速度
下载PDF
基于非参数回归的短时交通流预测研究综述 被引量:12
7
作者 李振龙 张利国 钱海峰 《交通运输工程与信息学报》 2008年第4期34-39,共6页
短时交通流预测是实现交通控制和诱导的关键问题之一。综述了基于非参数回归的短时交通流预测方法,指出了状态向量的选取没有考虑天气环境等存在的问题,提出了改进思路和方法,即基于动态聚类和决策树的历史数据组织方式、时空-天气环境... 短时交通流预测是实现交通控制和诱导的关键问题之一。综述了基于非参数回归的短时交通流预测方法,指出了状态向量的选取没有考虑天气环境等存在的问题,提出了改进思路和方法,即基于动态聚类和决策树的历史数据组织方式、时空-天气环境相结合的状态向量选取方法以及基于密集度和状态向量的自适应变K机制等,期望通过这些改进能提高基于非参数回归短时交通流的预测精度,为交通控制和交通诱导建立基础。 展开更多
关键词 非参数回归 短时交通流 预测
下载PDF
短时交通量时间序列的小波分析-模糊马尔柯夫预测方法 被引量:8
8
作者 陈淑燕 王炜 瞿高峰 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第4期637-640,共4页
基于短时交通量时间序列的随机波动特征,提出一种小波分析和模糊马尔柯夫结合的预测方法.首先对交通量时间序列进行多分辨率小波分解,然后对低频部分和高频部分分别进行重构,对重构后的基本信号和干扰信号建立模糊马尔柯夫模型,最后对... 基于短时交通量时间序列的随机波动特征,提出一种小波分析和模糊马尔柯夫结合的预测方法.首先对交通量时间序列进行多分辨率小波分解,然后对低频部分和高频部分分别进行重构,对重构后的基本信号和干扰信号建立模糊马尔柯夫模型,最后对多个预测结果进行合成,从而得到交通量的预测结果.此外,根据灰色系统理论的新息优先原理,实时更新马尔柯夫预测模型中的状态转移矩阵,进一步提高预测精度.通过对苏州某交叉口短时交通量预测,表明小波分析和模糊马尔柯夫结合的预测方法具有良好的抗干扰能力和容错能力. 展开更多
关键词 短时交通量 预测 小波分析 模糊马尔柯夫
下载PDF
基于小波分析的短时交通流非参数回归预测 被引量:7
9
作者 高勇 陈锋 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第12期1427-1431,共5页
短时交通流预测是交通诱导与控制的关键技术之一.传统的预测方法难以预测短时状况下具有较强不确定性的交通流.根据交通流信号在不同的时频域空间的不同特性,提出一种组合小波分析和非参数回归的短时交通流预测方法,并对其原理进行了详... 短时交通流预测是交通诱导与控制的关键技术之一.传统的预测方法难以预测短时状况下具有较强不确定性的交通流.根据交通流信号在不同的时频域空间的不同特性,提出一种组合小波分析和非参数回归的短时交通流预测方法,并对其原理进行了详细分析和描述.首先对交通流时序信号进行多分辨率小波分解,然后对低频和高频分量分别进行单支重构.在此基础上,引入非参数回归对各频率部分分别进行预测,组合各频率空间的预测分量获取预测结果.实验结果验证了该方法的有效性和可行性. 展开更多
关键词 小波分析 非参数回归 短时交通流 预测
下载PDF
融合BP神经网络与ARIMA的短时交通流预测 被引量:9
10
作者 曾庆山 全书鹏 靳志强 《郑州大学学报(工学版)》 CAS 北大核心 2011年第4期60-63,共4页
为了能在交通管理中提前采取措施规避可能存在的交通拥挤或堵塞,提出了一种高效可靠的短时交通流预测算法.首先采用BP神经网络与自回归求和滑动平均(ARIMA)两种方法分别建立单项预测子模型,再以BP神经网络作为最优非线性组合模型的逼近... 为了能在交通管理中提前采取措施规避可能存在的交通拥挤或堵塞,提出了一种高效可靠的短时交通流预测算法.首先采用BP神经网络与自回归求和滑动平均(ARIMA)两种方法分别建立单项预测子模型,再以BP神经网络作为最优非线性组合模型的逼近器,建立组合预测模型,对单项预测子模型的预测值进行融合,由此得到最终的预测结果.通过MATLAB与SPSS平台对实测交通流量数据进行了仿真分析,结果表明,该种组合预测方法是切实可行的. 展开更多
关键词 智能交通 短时交通流 预测 时间序列 神经网络
下载PDF
基于分形理论的短时交通流预测算法 被引量:7
11
作者 承向军 刘军 马敏书 《交通运输系统工程与信息》 EI CSCD 2010年第4期106-110,共5页
城市交通诱导与控制需要短时交通流预测作为依据,当预测时间小于5 min时,常用的短时交通流预测方法往往难以满足精度要求.为了提高短时交通流预测的精度,针对短时交通流的非线性特征,采用基于分形的方法可以缩短预测时间、提高预测精度.... 城市交通诱导与控制需要短时交通流预测作为依据,当预测时间小于5 min时,常用的短时交通流预测方法往往难以满足精度要求.为了提高短时交通流预测的精度,针对短时交通流的非线性特征,采用基于分形的方法可以缩短预测时间、提高预测精度.在G-P算法基础上,本文利用欧式模定义相空间任意两点间的欧式距离,并采用筛选法计算备选点的欧式距离,以此提高计算速度,使预测2 min内的交通流成为可能.以北京西直门至阜成门段一天的断面交通量为实例,应用基于分形的短时交通量预测算法,对712个有效数据点的后30点进行预测,预测精度达到92%以上. 展开更多
关键词 城市交通 分形理论 短时交通流 交通预测 交通诱导与控制
下载PDF
基于浮动车数据非参数回归短时交通速度预测 被引量:8
12
作者 屈莉 兰时勇 张建伟 《计算机工程与设计》 CSCD 北大核心 2013年第9期3298-3301,3332,共5页
非参数回归算法是近年来提出的一种较新型的短时交通流预测算法,为了提高预测精度,提出了基于误差反馈的预测方法。加入误差反馈机制,针对状态向量中的权值进行实时的反馈修改,得到了较满意的结果。采用成都市浮动车系统中的出租车浮动... 非参数回归算法是近年来提出的一种较新型的短时交通流预测算法,为了提高预测精度,提出了基于误差反馈的预测方法。加入误差反馈机制,针对状态向量中的权值进行实时的反馈修改,得到了较满意的结果。采用成都市浮动车系统中的出租车浮动车数据对红星路二段的速度进行了预测,预测结果表明,该算法的预测精度优于无反馈的非参数回归和BP神经网络。 展开更多
关键词 短时交通流 速度预测 非参数回归 误差反馈 浮动车数据
下载PDF
公路短时车流量预测模型研究 被引量:7
13
作者 宋子房 《科学决策》 CSSCI 2014年第4期83-94,共12页
为解决公路交通拥堵,做好道路交通安全规划,应加强对道路交通车流量的实时监控和预测,以便及时发现当前交通的非正常拥堵状况,提高人民的出行效率。公路短时车流量的监测数据具有不确定性和非线性的特点,针对这些特点,运用灰色系统理论... 为解决公路交通拥堵,做好道路交通安全规划,应加强对道路交通车流量的实时监控和预测,以便及时发现当前交通的非正常拥堵状况,提高人民的出行效率。公路短时车流量的监测数据具有不确定性和非线性的特点,针对这些特点,运用灰色系统理论预测模型和时间序列的ARIMA预测模型分别对车流量状况进行预测。在此基础上,提出将二者相结合的车流量组合预测模型。通过实例对比分析,得出组合预测模型的预测精度高于单独使用灰色预测模型和时间序列分析模型的结论,该模型可以作为短时车流量预测的一种有效方法。 展开更多
关键词 短时车流量 灰色预测 ARIMA 组合预测
下载PDF
交通大数据环境下短时交通流量预测研究 被引量:6
14
作者 蔡晓禹 谭宇婷 +1 位作者 雷财林 刘秀彩 《铁道运输与经济》 北大核心 2018年第8期88-93,共6页
针对当前城市交通日益复杂脆弱,以及精细化控制对预测精度要求的现实需求,分析短时交通流量预测研究现状及已有方法在实际预测中的特点与局限性,剖析传统预测手段所面临的挑战与困境。研究结合现代城市交通数字化、信息化、智慧化发展背... 针对当前城市交通日益复杂脆弱,以及精细化控制对预测精度要求的现实需求,分析短时交通流量预测研究现状及已有方法在实际预测中的特点与局限性,剖析传统预测手段所面临的挑战与困境。研究结合现代城市交通数字化、信息化、智慧化发展背景,把握交通数据由小样本环境向大数据环境转变的有利契机,依据从实际交通大数据中提取的典型数据,分析探讨从海量数据中挖掘具有相似变化态势的数据进行短时交通流量预测的可行性,并从历史数据库构建、相似度量机制、预测相关参数选取等方面提出相应的算法思路和关键技术。 展开更多
关键词 短时交通流量 预测 研究现状 大数据环境 数据挖掘
下载PDF
基于组合模型的短时交通流预测方法 被引量:6
15
作者 徐先峰 夏振 赵龙龙 《测控技术》 2021年第3期117-122,共6页
准确、实时的交通流预测对交通规划、交通管理和交通控制具有重要意义。然而,由于道路网络拓扑结构约束和交通流随时间动态变化的空时相关特性,交通流预测仍然具有挑战性。为了同时捕获交通流的空间和时间相关性,提出一种将图卷积网络(G... 准确、实时的交通流预测对交通规划、交通管理和交通控制具有重要意义。然而,由于道路网络拓扑结构约束和交通流随时间动态变化的空时相关特性,交通流预测仍然具有挑战性。为了同时捕获交通流的空间和时间相关性,提出一种将图卷积网络(GCN)和门控循环单元(GRU)相结合的组合模型方法。利用GCU能够灵活处理图结构数据的优点来捕捉各个路段的空间特征,继而发挥GRU在处理时间序列方面的优势挖掘交通流的内在时间规律,空时融合后得到最终预测结果。利用美国交通研究数据实验室的高速公路交通数据对该模型进行仿真验证,结果表明,所提出的GCN-GRU组合模型方法具有更高的预测精度,预测结果优于自回归积分滑动平均(ARIMA)模型和GRU模型等基准预测方法。 展开更多
关键词 智能交通系统 短时交通预测 图卷积网络 门控循环单元 空时相关性
下载PDF
短时交通流量预测方法 被引量:5
16
作者 韦凌翔 陈红 +3 位作者 王永岗 蔡志理 钟栋青 李玉华 《山东交通学院学报》 CAS 2017年第3期22-29,共8页
短时交通流量是短时交通参数的基础参数之一,其变化规律可直观反映调查路段或区域的交通变化趋势,可为交通出行提供有效的路径选择信息。基于对统计分析模型、人工智能模型、非线性理论、交通模拟、组合预测模型等短时交通流量预测方法... 短时交通流量是短时交通参数的基础参数之一,其变化规律可直观反映调查路段或区域的交通变化趋势,可为交通出行提供有效的路径选择信息。基于对统计分析模型、人工智能模型、非线性理论、交通模拟、组合预测模型等短时交通流量预测方法特点和应用的分析,鉴于短时交通流量自身的随机波动特性,指出单一的交通参数预测方法很难有效提高预测的精度和效果,而基于组合预测模型的预测方法具有广阔的应用前景和实践意义,并指出短时交通流量预测方法研究领域今后可能的发展趋势。 展开更多
关键词 城市交通 短时交通流量 预测 智能交通系统
下载PDF
基于ICA和SVM的道路网短时交通流量预测方法 被引量:4
17
作者 谢宏 刘敏 陈淑荣 《计算机应用》 CSCD 北大核心 2009年第9期2550-2553,共4页
交通流量预测是智能交通系统(ITS)研究的一个重要课题。通过对多个观测点交通流量数据特点进行分析,采用一种基于独立成分分析(ICA)与支持向量机(SVM)相结合的短时交通流量预测方法。首先,通过独立成分分析得到同一条道路上各个观测点... 交通流量预测是智能交通系统(ITS)研究的一个重要课题。通过对多个观测点交通流量数据特点进行分析,采用一种基于独立成分分析(ICA)与支持向量机(SVM)相结合的短时交通流量预测方法。首先,通过独立成分分析得到同一条道路上各个观测点的交通流量的独立源信号;接着利用支持向量机预测模型对源信号进行建模和预测,并通过遗传算法(GA)优化参数;最后将其转换为交通流量数据,得到预测结果。实例分析结果显示,该算法优于直接利用支持向量机对交通流量进行预测的方法,并能去除同一条道路上多个观测点测量数据之间的相互影响。 展开更多
关键词 短时交通流量 预测 独立成分分析 支持向量机 遗传算法
下载PDF
Comparing practice-ready forecast models for weekly and monthly fluctuations of average daily traffic and enhancing accuracy by weighting methods 被引量:2
18
作者 Andrea Pompigna Federico Rupi 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第4期239-253,共15页
Knowing daily traffic for the current year is recognized as being essential in many fields of transport analysis and practice, and short-term forecasting models offer a set of tools to meet these needs. This paper exa... Knowing daily traffic for the current year is recognized as being essential in many fields of transport analysis and practice, and short-term forecasting models offer a set of tools to meet these needs. This paper examines and compares the accuracy of three representative parametric and non-parametric prediction models, selected by the analysis of the numerous methods proposed in the literature for their good combi- nation of forecast accuracy and ease of calibration, using real-life data on Italian motorway stretches. Non-parametric K-NN regression model, Gaussian maximum likelihood model and double seasonality Holt-Winters exponential smoothing model confirm their goodness to predict the weekly and monthly fluctuations of average daily traffic with varying degrees of performance, while maintaining an easy use in professional practice, i.e. requiring ordinary professional skills and conventional analysis tools. Since combining several prediction models can give, on average, more accuracy than that of the individual models, the paper compares two weighting methods of easy implementation and susceptible to a direct use, namely the widely used information entropy method and the less widespread Shapley value method. Despite being less common than the information entropy method, the Shapley value method proves to be more capable in better combining single forecasts and produces improvements in the predictions for test data. With these remarks, the paper might be of interest to traffic technicians or analysts, in various and not uncommon tasks they might find in their work. 展开更多
关键词 short-term traffic forecasting Non-parametric regression Gaussian maximum likelihood Double seasonal Holt-Winters exponential smoothing Entropy weighting method Shapley value weighting method
原文传递
Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network 被引量:3
19
作者 ZHANG Jun ZHAO Shenwei +1 位作者 WANG Yuanqiang ZHU Xinshan 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期209-219,共11页
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ... The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data. 展开更多
关键词 urban traffic short-term traffic flow forecasting social emotion optimization algorithm(SEOA) back-propagation neural network(BPNN) Metropolis rule
原文传递
基于核学习方法的短时交通流量预测 被引量:3
20
作者 王秋莉 李军 《计算机应用研究》 CSCD 北大核心 2019年第3期696-700,共5页
基于核学习的强大非线性映射性能,针对短时交通流量预测,提出一类基于核学习方法的预测模型。核递推最小二乘(KRLS)基于近似线性依赖(approximate linear dependence,ALD)技术可降低计算复杂度及存储量,是一种在线核学习方法,适用于较... 基于核学习的强大非线性映射性能,针对短时交通流量预测,提出一类基于核学习方法的预测模型。核递推最小二乘(KRLS)基于近似线性依赖(approximate linear dependence,ALD)技术可降低计算复杂度及存储量,是一种在线核学习方法,适用于较大规模数据集的学习;核偏最小二乘(KPLS)方法将输入变量投影在潜在变量上,利用输入与输出变量之间的协方差信息提取潜在特征;核极限学习机(KELM)方法用核函数表示未知的隐含层非线性特征映射,通过正则化最小二乘算法计算网络的输出权值,能以极快的学习速度获得良好的推广性。为验证所提方法的有效性,将KELM、KPLS、ALD-KRLS用于不同实测交通流数据中,在同等条件下,与现有方法进行比较。实验结果表明,不同核学习方法的预测精度和训练速度均有所提高,体现了核学习方法在短时交通流量预测中的应用潜力。 展开更多
关键词 核学习方法 短时交通流 预测
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部