Performance of giant magnetostrictive material (GMM) is introduced. Principleof work, basic structure and key techniques of giant magnetostrictive actuator (GMA) are analyzed.Its dynamic models of magneto-mechanical c...Performance of giant magnetostrictive material (GMM) is introduced. Principleof work, basic structure and key techniques of giant magnetostrictive actuator (GMA) are analyzed.Its dynamic models of magneto-mechanical coupling are established. The structure and principle ofthe pneumatic servo valve and the micro pipe robot with new homemade GMM are presented. Theexperiment is carried out under typical working conditions. The experiment results show that the GMMpneumatic servo valve has wide pressure control characteristics, good linearity, and fast responsespeed. The movement principles of the GMM robot system are reliably feasible and its maximal movingspeed is about 8 mm/s. It is preferable to the driving frequency of the robot within 100 approx 300Hz.展开更多
基金This project is supported by National Natural Science Foundation of China (No.59835160).
文摘Performance of giant magnetostrictive material (GMM) is introduced. Principleof work, basic structure and key techniques of giant magnetostrictive actuator (GMA) are analyzed.Its dynamic models of magneto-mechanical coupling are established. The structure and principle ofthe pneumatic servo valve and the micro pipe robot with new homemade GMM are presented. Theexperiment is carried out under typical working conditions. The experiment results show that the GMMpneumatic servo valve has wide pressure control characteristics, good linearity, and fast responsespeed. The movement principles of the GMM robot system are reliably feasible and its maximal movingspeed is about 8 mm/s. It is preferable to the driving frequency of the robot within 100 approx 300Hz.