Passive metals have superior resistance to general corrosion but are susceptible to pitting attack in certain aggressive media, leading to material failure with pronounced adverse economic and safety consequences. Ove...Passive metals have superior resistance to general corrosion but are susceptible to pitting attack in certain aggressive media, leading to material failure with pronounced adverse economic and safety consequences. Over the past decades, the mechanism of pitting corrosion has attracted corrosion community striving to study. However, the mechanism at the pitting initiation stage is still controversy, due to the difficulty encountered in obtaining precise experimental information with enough spatial resolution.Tracking the accurate sites where initial dissolution occurs as well as the propagation of the dissolution by means of multi-scale characterization is key to deciphering the link between microstructure and corrosion at the atomic scale and clarifying the pitting initiation mechanism. Here, we review our recent progresses in this issue by summarizing the results in three representative materials of 316F, and Super 304H stainless steel as well as 2024-Al alloy, using in situ ex-environmental TEM technique.展开更多
在半连续铸造过程中施加超声,成功制备了Φ1250 mm 2219铝合金铸锭.利用光学显微镜、扫描电镜、能谱仪及直读光谱仪等仪器对铸锭的组织与成分分布进行检测与分析,探究超声对铸锭组织与偏析的内在作用机制.研究结果表明:超声振动引起的...在半连续铸造过程中施加超声,成功制备了Φ1250 mm 2219铝合金铸锭.利用光学显微镜、扫描电镜、能谱仪及直读光谱仪等仪器对铸锭的组织与成分分布进行检测与分析,探究超声对铸锭组织与偏析的内在作用机制.研究结果表明:超声振动引起的空化和声流效应能明显均匀组织结构,细化晶粒,尤其是心部晶粒细化率达到39.6%.超声促进铸锭晶间第二相呈枝丫状断续分布,晶内析出物点状弥散分布.同时,超声有效减小近表面负偏析,降低边部与心部之间的溶质浓度差异,弱化整个横截面的浓度波动,从而改善宏观偏析.展开更多
基金supported financially by the National Natural Science Foundation of China (Nos. 51771212 and 11327901)the Innovation Fund in IMR (No. 2017-ZD05)
文摘Passive metals have superior resistance to general corrosion but are susceptible to pitting attack in certain aggressive media, leading to material failure with pronounced adverse economic and safety consequences. Over the past decades, the mechanism of pitting corrosion has attracted corrosion community striving to study. However, the mechanism at the pitting initiation stage is still controversy, due to the difficulty encountered in obtaining precise experimental information with enough spatial resolution.Tracking the accurate sites where initial dissolution occurs as well as the propagation of the dissolution by means of multi-scale characterization is key to deciphering the link between microstructure and corrosion at the atomic scale and clarifying the pitting initiation mechanism. Here, we review our recent progresses in this issue by summarizing the results in three representative materials of 316F, and Super 304H stainless steel as well as 2024-Al alloy, using in situ ex-environmental TEM technique.
文摘在半连续铸造过程中施加超声,成功制备了Φ1250 mm 2219铝合金铸锭.利用光学显微镜、扫描电镜、能谱仪及直读光谱仪等仪器对铸锭的组织与成分分布进行检测与分析,探究超声对铸锭组织与偏析的内在作用机制.研究结果表明:超声振动引起的空化和声流效应能明显均匀组织结构,细化晶粒,尤其是心部晶粒细化率达到39.6%.超声促进铸锭晶间第二相呈枝丫状断续分布,晶内析出物点状弥散分布.同时,超声有效减小近表面负偏析,降低边部与心部之间的溶质浓度差异,弱化整个横截面的浓度波动,从而改善宏观偏析.