In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by ...In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.展开更多
In this paper, the problem of non-response with significant travel costs in multivariate stratified sample surveys has been formulated of as a Multi-Objective Geometric Programming Problem (MOGPP). The fuzzy programmi...In this paper, the problem of non-response with significant travel costs in multivariate stratified sample surveys has been formulated of as a Multi-Objective Geometric Programming Problem (MOGPP). The fuzzy programming approach has been described for solving the formulated MOGPP. The formulated MOGPP has been solved with the help of LINGO Software and the dual solution is obtained. The optimum allocations of sample sizes of respondents and non respondents are obtained with the help of dual solutions and primal-dual relationship theorem. A numerical example is given to illustrate the procedure.展开更多
文摘In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.
文摘In this paper, the problem of non-response with significant travel costs in multivariate stratified sample surveys has been formulated of as a Multi-Objective Geometric Programming Problem (MOGPP). The fuzzy programming approach has been described for solving the formulated MOGPP. The formulated MOGPP has been solved with the help of LINGO Software and the dual solution is obtained. The optimum allocations of sample sizes of respondents and non respondents are obtained with the help of dual solutions and primal-dual relationship theorem. A numerical example is given to illustrate the procedure.