Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle ...Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle as a superior H2-evolutoin cocatalyst was successfully grafted on the TiO2 surface to greatly boost its photocatalytic activity via one-step lactic acid-induced synthesis strategy.Herein,the lactic acid can induce the homogeneous production of amorphous MoSx(a-MoSx)nanoparticles from MoS42-precursor,while the symbiotic S2^-ions can be easily and availably self-adsorbed on the a-Mo Sxsurface,resulting in the formation of S2^--adsorbed a-Mo Sxnanoparticles with a small size of 0.5-3 nm.Photocatalytic results manifested that the S2^--adsorbed Mo Sxnanoparticles could dramatically facilitate the H2-generation rate of TiO2 photocatalysts(3452μmol h^-1 g^-1,AQE=16.5%).In situ irradiated XPS in conjunction with transient-state PL and photoelectrochemical tests reveal that the improved H_(2)-generation activity can be ascribed to the synergistic effect of boosted interfacial charge transfer from TiO_(2) to S^(2-)adsorbed Mo Sx and the superior H_(2)-evolution reaction on self-adsorbed S_(2-)ions.In addition,the S^(2-)-adsorbed Mo Sx nanoparticles can also act as the general H_(2)-generation cocatalyst to obviously promote the activity of other typical host photocatalysts such as g-C_(3) N_(4) and Cd S.This work provides an innovative approach to develop high-efficiency Mo Sx-based cocatalyst with boosted interfacial charge transfer toward highly efficient photocatalytic materials.展开更多
A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2...A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2 physisorption measurements,and employed as potential adsorbents for CO_2 adsorption.The influence of structural and textural properties of these adsorbents over the CO_2 adsorption behaviour was also investigated.The results showed that MgO-based products prepared by solution–combustion and ball-milling processes,were highly porous,fluffy,nanocrystalline structures in nature,which are unique physico-chemical properties that significantly contribute to enhance their CO_2 adsorption.It was found that the MgO synthesized by solution combustion process,using a molar ratio of urea to magnesium nitrate(2:1),and treated by ball-milling during 2.5 hr(MgO-BM2.5h),exhibited the maximum CO_2 adsorption capacity of 1.611 mmol/g at 25℃ and 1 atm,mainly via chemisorption.The CO_2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area,total pore volume,pore size distribution and crystallinity.The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO_2adsorption–desorption times,without any significant loss of performance,that supports the potential of MgO-based adsorbent.The results confirmed that the special features of MgO prepared by solution–combustion and treated by ball-milling during 2.5 hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO_2 capture technologies.展开更多
We predicted two stable two-dimensional materials of carbon and bismuth elements,namely BiC and Bi_(2)C monolayers.The stabilities of two monolayers were examined by cohesive energy,Born criteria,first-principle MD si...We predicted two stable two-dimensional materials of carbon and bismuth elements,namely BiC and Bi_(2)C monolayers.The stabilities of two monolayers were examined by cohesive energy,Born criteria,first-principle MD simulations and phonon spectra,respectively.By including the spin-orbit coupling effects,the BiC monolayer is a metal and the Bi_(2)C monolayer possesses a narrow direct(indirect)band gap of 0.403(0.126)eV under the HSE06(GGA-PBE)functional.For the adsorption of CO_(2)molecules,the BiC and Bi_(2)C monolayers have three stable adsorption sites C2,T3 and T4 with the adsorption energies as-0.57,-0.51 and-0.81 eV,and the activation ability on the adsorption as T4>T3>C2.These consequences make the BiC and Bi_(2)C monolayers to be promising adsorbents to capture CO_(2)gas,the Bi_(2)C monolayer to be well photovoltaics and optoelectronics material,and the BiC monolayer to be ideal battery and electronics materials,respectively.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51872221 and 21771142)the Fundamental Research Funds for the Central Universities(No.WUT 2019IB002)。
文摘Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle as a superior H2-evolutoin cocatalyst was successfully grafted on the TiO2 surface to greatly boost its photocatalytic activity via one-step lactic acid-induced synthesis strategy.Herein,the lactic acid can induce the homogeneous production of amorphous MoSx(a-MoSx)nanoparticles from MoS42-precursor,while the symbiotic S2^-ions can be easily and availably self-adsorbed on the a-Mo Sxsurface,resulting in the formation of S2^--adsorbed a-Mo Sxnanoparticles with a small size of 0.5-3 nm.Photocatalytic results manifested that the S2^--adsorbed Mo Sxnanoparticles could dramatically facilitate the H2-generation rate of TiO2 photocatalysts(3452μmol h^-1 g^-1,AQE=16.5%).In situ irradiated XPS in conjunction with transient-state PL and photoelectrochemical tests reveal that the improved H_(2)-generation activity can be ascribed to the synergistic effect of boosted interfacial charge transfer from TiO_(2) to S^(2-)adsorbed Mo Sx and the superior H_(2)-evolution reaction on self-adsorbed S_(2-)ions.In addition,the S^(2-)-adsorbed Mo Sx nanoparticles can also act as the general H_(2)-generation cocatalyst to obviously promote the activity of other typical host photocatalysts such as g-C_(3) N_(4) and Cd S.This work provides an innovative approach to develop high-efficiency Mo Sx-based cocatalyst with boosted interfacial charge transfer toward highly efficient photocatalytic materials.
基金the National Institute of Nuclear Research(ININ),México,for financial support through project CB-406 stagesⅠ-Ⅲ
文摘A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2 physisorption measurements,and employed as potential adsorbents for CO_2 adsorption.The influence of structural and textural properties of these adsorbents over the CO_2 adsorption behaviour was also investigated.The results showed that MgO-based products prepared by solution–combustion and ball-milling processes,were highly porous,fluffy,nanocrystalline structures in nature,which are unique physico-chemical properties that significantly contribute to enhance their CO_2 adsorption.It was found that the MgO synthesized by solution combustion process,using a molar ratio of urea to magnesium nitrate(2:1),and treated by ball-milling during 2.5 hr(MgO-BM2.5h),exhibited the maximum CO_2 adsorption capacity of 1.611 mmol/g at 25℃ and 1 atm,mainly via chemisorption.The CO_2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area,total pore volume,pore size distribution and crystallinity.The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO_2adsorption–desorption times,without any significant loss of performance,that supports the potential of MgO-based adsorbent.The results confirmed that the special features of MgO prepared by solution–combustion and treated by ball-milling during 2.5 hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO_2 capture technologies.
基金funded by the Natural Science Foundation of China(Nos.21603109,11304128)the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216)+1 种基金the Science and Technology Program of Henan Department of Science and Technology,China(No.182102310609)the Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering(Mathematics,Education and Electronic Science and Technology).
文摘We predicted two stable two-dimensional materials of carbon and bismuth elements,namely BiC and Bi_(2)C monolayers.The stabilities of two monolayers were examined by cohesive energy,Born criteria,first-principle MD simulations and phonon spectra,respectively.By including the spin-orbit coupling effects,the BiC monolayer is a metal and the Bi_(2)C monolayer possesses a narrow direct(indirect)band gap of 0.403(0.126)eV under the HSE06(GGA-PBE)functional.For the adsorption of CO_(2)molecules,the BiC and Bi_(2)C monolayers have three stable adsorption sites C2,T3 and T4 with the adsorption energies as-0.57,-0.51 and-0.81 eV,and the activation ability on the adsorption as T4>T3>C2.These consequences make the BiC and Bi_(2)C monolayers to be promising adsorbents to capture CO_(2)gas,the Bi_(2)C monolayer to be well photovoltaics and optoelectronics material,and the BiC monolayer to be ideal battery and electronics materials,respectively.