The lack of treatment for poliomyelitis doing that only means of preventing is immunization with live oral polio vaccine (OPV) or/and inactivated polio vaccine (IPV). Poliomyelitis is a very contagious viral infection...The lack of treatment for poliomyelitis doing that only means of preventing is immunization with live oral polio vaccine (OPV) or/and inactivated polio vaccine (IPV). Poliomyelitis is a very contagious viral infection caused by poliovirus. Children are principally attacked. In this paper, we assess the impact of vaccination in the control of spread of poliomyelitis via a deterministic SVEIR (Susceptible-Vaccinated-Latent-Infectious-Removed) model of infectious disease transmission, where vaccinated individuals are also susceptible, although to a lesser degree. Using Lyapunov-Lasalle methods, we prove the global asymptotic stability of the unique endemic equilibrium whenever ?. Numerical simulations, using poliomyelitis data from Cameroon, are conducted to approve analytic results and to show the importance of vaccinate coverage in the control of disease spread.展开更多
In this paper, based on a class of multi-group epidemic models of SEIR type with bilinear incidences, we introduce a vaccination compartment, leading to multi-group SVEIR model. We establish that the global dynamics a...In this paper, based on a class of multi-group epidemic models of SEIR type with bilinear incidences, we introduce a vaccination compartment, leading to multi-group SVEIR model. We establish that the global dynamics are completely determined by the basic reproduction number R0V which is defined by the spectral radius of the next generation matrix. Our proofs of global stability of the equilibria utilize a graph-theoretical approach to the method of Lyapunov functionals. Mathematical results suggest that vaccination is helpful for disease control by decreasing the basic reproduction number. However, there is a necessary condition for successful elimination of disease. If the time for the vaccines to obtain immunity or the possibility for them to be infected before acquiring immunity is neglected in each group, this condition will be satisfied and the disease can always be eradicated by suitable vaccination strategies. This may lead to over evaluation for the effect of vaccination.展开更多
In this paper,we consider a delayed diffusive SVEIR model with general incidence.We first establish the threshold dynamics of this model.Using a Nonstandard Finite Difference(NSFD) scheme,we then give the discretizati...In this paper,we consider a delayed diffusive SVEIR model with general incidence.We first establish the threshold dynamics of this model.Using a Nonstandard Finite Difference(NSFD) scheme,we then give the discretization of the continuous model.Applying Lyapunov functions,global stability of the equilibria are established.Numerical simulations are presented to validate the obtained results.The prolonged time delay can lead to the elimination of the infectiousness.展开更多
The global dynamics of an SVEIR epidemic model with age-dependent waning immu- nity, latency and relapse are studied. Sharp threshold properties for global asymptotic stability of both disease-free equilibrium and end...The global dynamics of an SVEIR epidemic model with age-dependent waning immu- nity, latency and relapse are studied. Sharp threshold properties for global asymptotic stability of both disease-free equilibrium and endemic equilibrium are given. The asymptotic smoothness, uniform persistence and the existence of interior global attractor of the semi-flow generated by a family of solutions of the system are also addressed. Furthermore, some related strategies for controlling the spread of diseases are discussed.展开更多
文摘The lack of treatment for poliomyelitis doing that only means of preventing is immunization with live oral polio vaccine (OPV) or/and inactivated polio vaccine (IPV). Poliomyelitis is a very contagious viral infection caused by poliovirus. Children are principally attacked. In this paper, we assess the impact of vaccination in the control of spread of poliomyelitis via a deterministic SVEIR (Susceptible-Vaccinated-Latent-Infectious-Removed) model of infectious disease transmission, where vaccinated individuals are also susceptible, although to a lesser degree. Using Lyapunov-Lasalle methods, we prove the global asymptotic stability of the unique endemic equilibrium whenever ?. Numerical simulations, using poliomyelitis data from Cameroon, are conducted to approve analytic results and to show the importance of vaccinate coverage in the control of disease spread.
文摘In this paper, based on a class of multi-group epidemic models of SEIR type with bilinear incidences, we introduce a vaccination compartment, leading to multi-group SVEIR model. We establish that the global dynamics are completely determined by the basic reproduction number R0V which is defined by the spectral radius of the next generation matrix. Our proofs of global stability of the equilibria utilize a graph-theoretical approach to the method of Lyapunov functionals. Mathematical results suggest that vaccination is helpful for disease control by decreasing the basic reproduction number. However, there is a necessary condition for successful elimination of disease. If the time for the vaccines to obtain immunity or the possibility for them to be infected before acquiring immunity is neglected in each group, this condition will be satisfied and the disease can always be eradicated by suitable vaccination strategies. This may lead to over evaluation for the effect of vaccination.
文摘In this paper,we consider a delayed diffusive SVEIR model with general incidence.We first establish the threshold dynamics of this model.Using a Nonstandard Finite Difference(NSFD) scheme,we then give the discretization of the continuous model.Applying Lyapunov functions,global stability of the equilibria are established.Numerical simulations are presented to validate the obtained results.The prolonged time delay can lead to the elimination of the infectiousness.
基金X. Liu is supported by the National Natural Science Foundation of China (11271303). L. Liu is supported by the National Natural Science Foundation of China (11601293) and Chongqing Graduate Student Research Innovation Project (CYB14053). We are grateful to the editors and two anonymous referees for their valuable comments and suggestions that led to an improvement of our manuscript.
文摘The global dynamics of an SVEIR epidemic model with age-dependent waning immu- nity, latency and relapse are studied. Sharp threshold properties for global asymptotic stability of both disease-free equilibrium and endemic equilibrium are given. The asymptotic smoothness, uniform persistence and the existence of interior global attractor of the semi-flow generated by a family of solutions of the system are also addressed. Furthermore, some related strategies for controlling the spread of diseases are discussed.