图像特征匹配的核心是通过距离函数实现在高维矢量空间进行相似性检索.重点研究提取好的特征点并快速准确地找到查询点的近邻.首先,提取图像的多量、有区别且稳健的SURF(Speeded up robust feature)特征点,并将特征点凸包进行Delaunay剖...图像特征匹配的核心是通过距离函数实现在高维矢量空间进行相似性检索.重点研究提取好的特征点并快速准确地找到查询点的近邻.首先,提取图像的多量、有区别且稳健的SURF(Speeded up robust feature)特征点,并将特征点凸包进行Delaunay剖分.然后,对Delaunay三角边抽样、聚类、量化并构建索引.通过票决算法,将点对匹配与否映射到矩阵中以解决距离度量没有利用数据集本身所蕴含的任何结构信息和搜索效率相对较低的问题.结合SURF算法和Delaunay三角网提出一种特征匹配的新方法,在标准图像集上的实验验证,在耗时基本相同的情况下,提取的特征点较多且正确匹配率较高.展开更多
针对传统图像匹配算法计算量大、耗时长等缺陷,提出一种基于SURF(speeded up robust features)的图像特征点快速匹配算法.首先对图像采用SURF算法提取特征点;然后通过Haar小波变换确定特征点的主方向和特征点描述子,使用优化的最近邻搜...针对传统图像匹配算法计算量大、耗时长等缺陷,提出一种基于SURF(speeded up robust features)的图像特征点快速匹配算法.首先对图像采用SURF算法提取特征点;然后通过Haar小波变换确定特征点的主方向和特征点描述子,使用优化的最近邻搜索算法(best bin first,BBF)进行特征点匹配;最后根据实际需要选取相似度最高的前n对匹配点进行对比实验.实验结果表明:该算法鲁棒性强,速度快,匹配准确性高,具有较大的应用价值.展开更多
三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在...三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在线学习,提高注册精度;最后,利用前一帧的注册矩阵快速恢复已丢失的关键点,以提高注册的速度.实验结果表明,该方法能够较为流畅地对视频帧进行跟踪,并能保持较好的注册精度.展开更多
针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(f...针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。展开更多
针对数码印花生产过程中织物上出现的白丝、斑点以及褶皱等表面缺陷问题,课题组设计了基于加速鲁棒特征算法的印花织物表面缺陷检测系统。主要通过加速稳健特征算法(speeded up robust features,SURF)来进行图像配准;采用双向唯一性匹...针对数码印花生产过程中织物上出现的白丝、斑点以及褶皱等表面缺陷问题,课题组设计了基于加速鲁棒特征算法的印花织物表面缺陷检测系统。主要通过加速稳健特征算法(speeded up robust features,SURF)来进行图像配准;采用双向唯一性匹配法减少误配点,实现图像精准配准,并通过差分算法来提取缺陷信息。实验采用多幅图像对改进SURF算法的性能进行了验证。试验结果表明:新系统对印花织物表面缺陷的检测精度达到98%,达到了实际应用要求。展开更多
文摘图像特征匹配的核心是通过距离函数实现在高维矢量空间进行相似性检索.重点研究提取好的特征点并快速准确地找到查询点的近邻.首先,提取图像的多量、有区别且稳健的SURF(Speeded up robust feature)特征点,并将特征点凸包进行Delaunay剖分.然后,对Delaunay三角边抽样、聚类、量化并构建索引.通过票决算法,将点对匹配与否映射到矩阵中以解决距离度量没有利用数据集本身所蕴含的任何结构信息和搜索效率相对较低的问题.结合SURF算法和Delaunay三角网提出一种特征匹配的新方法,在标准图像集上的实验验证,在耗时基本相同的情况下,提取的特征点较多且正确匹配率较高.
文摘针对传统图像匹配算法计算量大、耗时长等缺陷,提出一种基于SURF(speeded up robust features)的图像特征点快速匹配算法.首先对图像采用SURF算法提取特征点;然后通过Haar小波变换确定特征点的主方向和特征点描述子,使用优化的最近邻搜索算法(best bin first,BBF)进行特征点匹配;最后根据实际需要选取相似度最高的前n对匹配点进行对比实验.实验结果表明:该算法鲁棒性强,速度快,匹配准确性高,具有较大的应用价值.
文摘三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在线学习,提高注册精度;最后,利用前一帧的注册矩阵快速恢复已丢失的关键点,以提高注册的速度.实验结果表明,该方法能够较为流畅地对视频帧进行跟踪,并能保持较好的注册精度.
文摘针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。
文摘针对数码印花生产过程中织物上出现的白丝、斑点以及褶皱等表面缺陷问题,课题组设计了基于加速鲁棒特征算法的印花织物表面缺陷检测系统。主要通过加速稳健特征算法(speeded up robust features,SURF)来进行图像配准;采用双向唯一性匹配法减少误配点,实现图像精准配准,并通过差分算法来提取缺陷信息。实验采用多幅图像对改进SURF算法的性能进行了验证。试验结果表明:新系统对印花织物表面缺陷的检测精度达到98%,达到了实际应用要求。