The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range.A larger dynamic range indicates a greater probability of neuronal survival.In this study,the potential...The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range.A larger dynamic range indicates a greater probability of neuronal survival.In this study,the potential roles of adaptation mechanisms(ion currents) in modulating neuronal dynamic range were numerically investigated.Based on the adaptive exponential integrate-and-fire model,which includes two different adaptation mechanisms,i.e.subthreshold and suprathreshold(spike-triggered) adaptation,our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range.Specifically,subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range,while suprathreshold adaptation has little influence on the neuronal dynamic range.Moreover,when stochastic noise was introduced into the adaptation mechanisms,the dynamic range was apparently enhanced,regardless of what state the neuron was in,e.g.adaptive or non-adaptive.Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms.Additionally,noise was a non-ignorable factor,which could effectively modulate the neuronal dynamic range.展开更多
Electrically evoked compound action potential(e CAP) amplitudes elicited at suprathreshold levels were assessed as a measure of the effectiveness of cochlear implant(CI) stimulation. Twenty-one individuals participate...Electrically evoked compound action potential(e CAP) amplitudes elicited at suprathreshold levels were assessed as a measure of the effectiveness of cochlear implant(CI) stimulation. Twenty-one individuals participated; one was excluded due to facial stimulation during e CAP testing. For each participant, e CAPs were elicited with stimulation from seven electrodes near the upper limit of the individual's electrical dynamic range. A reduced-channel CI program was created using those same seven electrodes, and participants performed a vowel discrimination task. Consistent with previous reports, e CAP amplitudes varied across tested electrodes; the profiles were unique to each individual. In 6subjects(30%), e CAP amplitude variability was partially explained by the impedance of the recording electrode. The remaining amplitude variability within subjects, and the variability observed across subjects could not be explained by recording electrode impedance. This implies that other underlying factors, such as variations in neural status across the array, are responsible. Across-site mean e CAP amplitude was significantly correlated with vowel discrimination scores(r^2= 0.56). A single e CAP amplitude measured from the middle of the array was also significantly correlated with vowel discrimination, but the correlation was weaker(r^2= 0.37), though not statistically different from the acrosssite mean. Normalizing each e CAP amplitude by its associated recording electrode impedance did not improve the correlation with vowel discrimination(r^2= 0.52). Further work is needed to assess whether combining e CAP amplitude with other measures of the electrode-neural interface and/or with more central measures of auditory function provides a more complete picture of auditory function in CI recipients.展开更多
To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is s...To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is studied based on mutual information. It is obtained that Gaussian mixture noise can improve the information transmission through the array. Both stochastic resonance (SR) and suprathreshold stochastic resonance (SSR) can be observed in the single threshold system and in the threshold array. The parameters in noise distribution affect the occurrence of SR and SSR. The efficacy of information transmission can be significantly enhanced as the number of threshold devices in the array increases. These results show further the dependence of SR and SSR on the noise distribution, and also extend the applicability of SR and SSR in information transmission.展开更多
基金supported by a grant from Beijing Municipal Commission of Science and Technology of China,No.Z151100000915070
文摘The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range.A larger dynamic range indicates a greater probability of neuronal survival.In this study,the potential roles of adaptation mechanisms(ion currents) in modulating neuronal dynamic range were numerically investigated.Based on the adaptive exponential integrate-and-fire model,which includes two different adaptation mechanisms,i.e.subthreshold and suprathreshold(spike-triggered) adaptation,our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range.Specifically,subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range,while suprathreshold adaptation has little influence on the neuronal dynamic range.Moreover,when stochastic noise was introduced into the adaptation mechanisms,the dynamic range was apparently enhanced,regardless of what state the neuron was in,e.g.adaptive or non-adaptive.Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms.Additionally,noise was a non-ignorable factor,which could effectively modulate the neuronal dynamic range.
基金supported by the National Institutes of Health, National Institute on Deafness and Other Communication Disorders under the following grants awarded to the University of Iowa: F31DC013202, P50DC000242, and R01DC012082funded in part by the University of Iowa Department of Communication Sciences and Disorders
文摘Electrically evoked compound action potential(e CAP) amplitudes elicited at suprathreshold levels were assessed as a measure of the effectiveness of cochlear implant(CI) stimulation. Twenty-one individuals participated; one was excluded due to facial stimulation during e CAP testing. For each participant, e CAPs were elicited with stimulation from seven electrodes near the upper limit of the individual's electrical dynamic range. A reduced-channel CI program was created using those same seven electrodes, and participants performed a vowel discrimination task. Consistent with previous reports, e CAP amplitudes varied across tested electrodes; the profiles were unique to each individual. In 6subjects(30%), e CAP amplitude variability was partially explained by the impedance of the recording electrode. The remaining amplitude variability within subjects, and the variability observed across subjects could not be explained by recording electrode impedance. This implies that other underlying factors, such as variations in neural status across the array, are responsible. Across-site mean e CAP amplitude was significantly correlated with vowel discrimination scores(r^2= 0.56). A single e CAP amplitude measured from the middle of the array was also significantly correlated with vowel discrimination, but the correlation was weaker(r^2= 0.37), though not statistically different from the acrosssite mean. Normalizing each e CAP amplitude by its associated recording electrode impedance did not improve the correlation with vowel discrimination(r^2= 0.52). Further work is needed to assess whether combining e CAP amplitude with other measures of the electrode-neural interface and/or with more central measures of auditory function provides a more complete picture of auditory function in CI recipients.
文摘To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is studied based on mutual information. It is obtained that Gaussian mixture noise can improve the information transmission through the array. Both stochastic resonance (SR) and suprathreshold stochastic resonance (SSR) can be observed in the single threshold system and in the threshold array. The parameters in noise distribution affect the occurrence of SR and SSR. The efficacy of information transmission can be significantly enhanced as the number of threshold devices in the array increases. These results show further the dependence of SR and SSR on the noise distribution, and also extend the applicability of SR and SSR in information transmission.