期刊文献+

阈值阵列模型与超阈值随机共振 被引量:1

Threshold Array Model and Suprathreshold Stochastic Resonance
原文传递
导出
摘要 研究了随机共振的一个特殊形式——超阈值随机共振。超阈值随机共振是基于阈值阵列模型的随机共振现象。分析了阈值阵列模型输出随机过程的统计特性,固定输入信噪比,可观察输出信噪比增益随阈值噪声方差的改变产生非单调变化的规律。实验验证了含噪周期输入信号经阈值阵列系统,在统计独立、服从高斯分布的阈值噪声作用下,输出信号信噪比增益大于1。且对于非高斯噪声,会获得更高的输出信噪比。 SSR (Suprathreshold Stochastic Resonance) phenomenon is studied as a special form of stochastic resonance. SSR is a phenomenon based on threshold array model. The statistical properties for output process of threshold array model are evaluated. With a fixed input SNR (signal-to-noise ratio), the output SNR gain varies in a non-monotonic way with the variance of threshold noises. The experiment indicates that, with the help of threshold noises, the output SNR gain is larger than unity, while the input noise is non-Gaussian, there would be a better SNR gain.
出处 《通信技术》 2012年第7期122-124,共3页 Communications Technology
关键词 超阈值随机共振 阈值阵列模型 信噪比增益 suprathreshold stochastic resonance threshold array model' SNR (signal-to-noiseratio) gain
  • 相关文献

参考文献11

  • 1STOCKS N G. Suprathreshold Stochastic Resonance in Multilevel Threshold Systems[J]. Physical Review Letters, 2000, 84(11): 2310-2313. 被引量:1
  • 2WIESENFELD K, PIERSON D. Stochastic Resonance on a circle[J]. Physical Review Letters, 1994, 72(14): 2125-2129. 被引量:1
  • 3MCDONNELL M D. Theoretical Aspects of Stochastic Signal Quantisation and Suprathreshold Stochastic Resonance[D]. Australia: University of Adelaide, 2006. 被引量:1
  • 4CHAPEAU-BLONDEAU F, GODIVIER X. Theory of Stochastic Resonance in Signal Transmission by Static Nonlinear Systems[J]. Physical Review E, 1997, 55(02):1478-1495. 被引量:1
  • 5STOCKS N G. Information Transmission in Parallel Threshold Arrays: Suprathreshold Stochastic Resonance[J]. Physical Review E, 2001, 63(04): 1-9. 被引量:1
  • 6ROUSSEAU D, CHAPEAU F. Noise-lmproved Bayesian Estimation With Arrays of One-Bit Quantizers[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(06): 2658-2662. 被引量:1
  • 7CHAPEAU F, ROUSSEAU D. Injecting Noise to Improve Performance of Optimal Detector[J]. Electronics Letters, 2007, 2(43):897-898. 被引量:1
  • 8崔琛,李辉,余剑.基于Morlet小波变换的MPSK信号调制识别[J].通信技术,2010,43(3):10-12. 被引量:3
  • 9吕殿基.用于WCDMA上行系统的并行干扰对消算法[J].通信技术,2009,42(7):125-127. 被引量:6
  • 10金光浪,宋茂忠.数字混沌序列在DSSS通信中的误码率仿真[J].信息安全与通信保密,2007,29(6):60-61. 被引量:2

二级参考文献11

  • 1Verdu S. Multiuser Detection[M]. UK: Cambridge Univ. Press, 1998. 被引量:1
  • 2Wang X, Poor H V. Interative (Turbo) soft Interference Cancellation and Decoding for Coded CDMA[J]. IEEE Trans Communication, 1999, 47(07):1046-1047. 被引量:1
  • 3Simone Morosi, Romano Fantacci, Andrea Bernacchioni. Improved Iterative Parallel Interference cancellation Receiver for Future Wireless DS-CDMA Systems[J]. EUPASIP Journal on Applied Signal Processing, 2005, 5:626-634. 被引量:1
  • 4Kim K,Polydoros A.Digital Modulation Classification:The BPSK Versus QPSK Case[J].Proc.HILCOMM,1988,2(10):431-436. 被引量:1
  • 5Solimn S S,Hsue S Z.Signal Classification Using Statistical Moments[J].IEEE Trans COrN,1992,40(05):908-916. 被引量:1
  • 6Yawpo Yang,Samir S Soliman.An Improved Moment-based Algorithm for Signal Classification[J].Signal Processing,1995(43):231-244. 被引量:1
  • 7Yawpo Yang,Somir S Soliman.A Suboptimal Algorithm for Modulation Classification[J].IEEE trans AAES,1997,30(01):38-45. 被引量:1
  • 8[2]HeidariBateni G.Chaotic Signals for Digital Communication[D].Doctoral Dissertation.Fort Wayne (IN,USA):Pudue University,1992. 被引量:1
  • 9赵伶俐.WCDMA系统基站覆盖范围的分析与优化[J].通信技术,2008,41(7):166-168. 被引量:4
  • 10周游,张丽霞,胡捍英.WCDMA中高速下行物理共享信道的RAKE接收机[J].通信技术,2009,42(3):100-102. 被引量:1

共引文献10

同被引文献28

  • 1Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[ J]. Journal of Physics A:Mathematical and Gener- al, 1981,14( 11 ) :453-457. 被引量:1
  • 2Fauve S, Heslot F. Stochastic resonance in a bistable system [ J]. Phys Lett, t983,97A(1-2) :5-7. 被引量:1
  • 3Gammaitoni L, Hanggi P, Jung P. Stochastic resonance [ J ]. Rev Mod Phys, 1998,70( 1 ) :223-287. 被引量:1
  • 4Gingl Z, Kiss L B, Moss F. Non-dynamic stochastic resonance [ J ]. Eurnphysies Letters, 1995,29 : 191 - 196. 被引量:1
  • 5Mitaim S, Kosko B. Adaptive stochastic resonance [ J ]. Pro- ceeding of the IEEE, 1998,86 ( 11 ) :2152-2183. 被引量:1
  • 6Zozor S, Amblard P O. Stochastic resonance in discrete-time nonlinear AR(1 ) models[J]. IEEE Trans on Signal Process- ing, 1999,47( 1 ) : 108-122. 被引量:1
  • 7Collins J J, Chow C C, Imhoff T T. Aperiod stochastic reso- nance in excitable systems [ J ]. Phys Rev E, 1995,52 (4) : 3321-3324. 被引量:1
  • 8Collins J J,Chow C C, Imhoff T T. Stochastic resonance with- out tuning[J]. Nature,1995,376(20) :236-238. 被引量:1
  • 9Chapeau-Blondeau F, Godivier X. Theory of stochastic reso- nance in signal transmission by static nonlinear system [ J ]. Phys Rev E, 1997,55 ( 2 ) : 1478-1495. 被引量:1
  • 10Zozor S, Amblard P O. Stochastic resonance in discrete-time nonlinear SETAR( 1,2,0,0) model[ C]//Proc of IEEE signal process, workshop higher order stat. Banff Aha, Canada: IEEE, 1997 : 166-170. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部