Human UBC9 is a member of the E2 family of proteins. However, instead of conjugating to ubiquitin, it conjugates to a ubiquitin homologue SUMO-1 (also known as UBL1, GMP1, SMTP3, PICT-1 and sentrin). The SUMO-1 conjug...Human UBC9 is a member of the E2 family of proteins. However, instead of conjugating to ubiquitin, it conjugates to a ubiquitin homologue SUMO-1 (also known as UBL1, GMP1, SMTP3, PICT-1 and sentrin). The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin activating enzymes (E1), the three-dimensional structures of the ubiquitin conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of p53 and UBC9, the E2 of the SUMO-1 pathway, has been studied by nuclear magnetic resonance spectroscopy. A peptide corresponding to the nuclear localization domain of p53 specifically interacts with UBC9 and this interaction is likely to be important for conjugation of p53 with SUMO-1. The largest chemical shift changes on UBC9 occur at residues 94 and 129-135. This region is adjacent to the active site and has significant dynamic behavior on the μs-ms and ps-ns timescales. Correlation of chemical shift changes and mobility of these residues further suggest the importance of these residues in substrate recognition.展开更多
文摘Human UBC9 is a member of the E2 family of proteins. However, instead of conjugating to ubiquitin, it conjugates to a ubiquitin homologue SUMO-1 (also known as UBL1, GMP1, SMTP3, PICT-1 and sentrin). The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin activating enzymes (E1), the three-dimensional structures of the ubiquitin conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of p53 and UBC9, the E2 of the SUMO-1 pathway, has been studied by nuclear magnetic resonance spectroscopy. A peptide corresponding to the nuclear localization domain of p53 specifically interacts with UBC9 and this interaction is likely to be important for conjugation of p53 with SUMO-1. The largest chemical shift changes on UBC9 occur at residues 94 and 129-135. This region is adjacent to the active site and has significant dynamic behavior on the μs-ms and ps-ns timescales. Correlation of chemical shift changes and mobility of these residues further suggest the importance of these residues in substrate recognition.