To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining...To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining technology and equipment, which solves four common technical problems that significantly undermine coal mining safety, efficiency, and high recovery and extraction rates. Based on the coupling characteristic between mining-induced stress field and supporting stress field of hydraulic support, we identify six controllable factors in the application of hydraulic support to surrounding rock, and further reveal the relationship between hydraulic support and surrounding rock in terms of the strength, the stiffness, and the stability coupling. Our findings provide a plausible solution to the longwall mining technical problem with 6-8 m mining height. By analyzing the dynamic disequilibrium characteristics between hydraulic support and surrounding rock, we propose the intelligent top coal caving control method and the high-coal-recovery-rate tech- nology for fully mechanized caving faces. With the invention of this technology, China is likely to lead the world in terms of the fully mechanized top coal caving mining technology. We are also the first to employ the intelligent coupling technology between hydraulic support and surrounding rock, and automated mining mode, and supporting system coop- erative control with automatic organization. We develop the comprehensive multi-index intelligence adjusting height decision-making mechanism and three-dimensional navigation automatic adjusting straightness technology based on shearer cutting height memory association, cutting power parameters, vibration, and video information, leading to the first set of intelligent longwall mining technology and equipment for thin seam. Our innovation makes a solid contribution to the revolution of intelligence mining technology. With the innovative use of three-dimensional coupling control principle for surrounding rock, we succ展开更多
This study was to determine the fermentation quality of a mixture of corn steep liquor(CSL)(178 g/kg wet basis) and air-dried rice straw(356 g/kg wet basis) after being treated with inoculants of different types of la...This study was to determine the fermentation quality of a mixture of corn steep liquor(CSL)(178 g/kg wet basis) and air-dried rice straw(356 g/kg wet basis) after being treated with inoculants of different types of lactic acid bacteria(LAB). The treatments included the addition of no LAB additive(control),which was deionized water; homo-fermentative LAB alone(^(ho)LAB), which was Lactobacillus plantarum alone), and a mixture of homo-fermentative and hetero-fermentative LAB(^(he+ho)LAB), which were L. plantarum, Lactobacillus casei, and Lactobacillus buchneri. The results showed that the inoculation of the mixture of CSL and air-dried rice straw with ^(he+ho)LAB significantly increased the concentration of acetic acid and lactic acid compared with the control(P < 0.05). The addition of ^(he+ho)LAB effectively inhibited the growth of yeast in the silage. The concentration of total lactic acid bacteria in the ^(he+ho)LAB-treated silage was significant higher than those obtained in other groups(P < 0.05). The duration of the aerobic stability of the silages increased from 56 h to >372 h. The control group was the first to spoil, whereas the silage treated with ^(he+ho)LAB remained stable throughout the 372 h period of monitoring. The results demonstrated that the ^(he+ho)LAB could effectively improve the fermentation quality and aerobic stability of the silage.展开更多
The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions a...The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value.展开更多
Dam break can cause a significant disaster in the downstream, especially, in a valley with cascade reservoirs, which would aggravate the disaster extent. The experimental studies of the dam-break flow of cascade reser...Dam break can cause a significant disaster in the downstream, especially, in a valley with cascade reservoirs, which would aggravate the disaster extent. The experimental studies of the dam-break flow of cascade reservoirs are few and far between at the present, Most of related studies concern the failure of a single dam.. This article presents an experimental study of the characteristics of an instantly filled dam-break flow of cascade reservoirs in a rectangular glass flume with a steep bottom slope. A new method was used to simulate the sudden collapse of the dam. A series of sensors for automatic water-levels were deployed to record the rapid water depth fluctuation. The experimental results show that, the ratio of the initial water depth of the downstream reservoir to that of the upstream reservoir would greatly affect the flood peak water depth in the downstream reservoir area and in the stream channel behind the downstream dam, while the influence of the dam spacing is insignificant. In addition, the comparison between the single reservoir and the cascade reservoirs shows some difference in the dam-break flow pattern and the stage hydrograph at the corresponding gauging points.展开更多
The Grain-for-Green Policy in China could not only improve China's ecological quality, but also influence grain supplies for a short term. Based on data from the detailed nationwide land use survey in 1996 and the st...The Grain-for-Green Policy in China could not only improve China's ecological quality, but also influence grain supplies for a short term. Based on data from the detailed nationwide land use survey in 1996 and the steep cultivated land survey update in 2000, a regression model for the driving forces affecting steep cultivated lands was developed, and cluster analysis was used to identify seven steep cultivated land types in order to analyze the grain availability impact of the project with land usage estimates for 2010 and 2030. The results suggested that consecutive days with minimum daily temperature over 10 ℃ and the dominant slope in a county constrained the spatial distribution of steep cultivated lands. In terms of socioeconomic factors, steep cultivated land was a complex interaction of population size, gross domestic production level, and the richness and quality of cultivated lands having slopes less then 15°. The trends for steep cultivated land in 2010 and 2030 were forecast using a driving forces model and China's grain security criteria and showed that the Grain-for-Green Policy at the national level would not cause a grain shortage or threaten food security criteria. However, if steep sloped lands were to be retired from production, some regions would need grain supplements as early as 2010. Also, assuming that only 60% of the cultivated land at the national level was needed, population and economic development pressures in 2030 would require some steep cultivated lands to be used for grain production.展开更多
Based on the Pb isotopic mapping of the continent of China and the geochemical data of Proterozoic basements, the steep zones of geochemical blocks of Cathaysia, Yangtze, North China, Central Mongolia, China\|Korea an...Based on the Pb isotopic mapping of the continent of China and the geochemical data of Proterozoic basements, the steep zones of geochemical blocks of Cathaysia, Yangtze, North China, Central Mongolia, China\|Korea and Jiamusi are established. There are tight relationships between geochemical steep zones and setting of the superlarge deposits along with main mineralization zones. There are Proterozoic basements belonging to different blocks on both sides of geochemical steep zones in which volcanism and SEDEX were comprehensively developed and associated with reconstruction ore emplacement of dynamic metamorphism and magmatism from Jinning period to Mesozoic\|Cenozoic.展开更多
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in util...Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.展开更多
Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.B...Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.展开更多
The object of this study was to determine the proper mixing ratio of fresh rice straw to corn steep liquor(CSL) to obtain a high protein content silage feed. The following experimental silages were generated: the cont...The object of this study was to determine the proper mixing ratio of fresh rice straw to corn steep liquor(CSL) to obtain a high protein content silage feed. The following experimental silages were generated: the control(C1), composed of fresh rice straw without CSL additive, mixed with CSL in the ratios of 4:1(C4),3:1(C3) and 2:1(C2). Lactic acid bacteria(LAB) inoculant was applied at the rate of 50 mL/kg(fresh basis)of forage to achieve a final application rate of 1 x 10~6 cfu/g of fresh matter(FM). Duplicate silos for each treatment were opened after 0,3, 7,10,20,30,45 and 60 d for microbiological and chemical analysis. The results showed that the addition of CSL significantly increased crude protein(CP) contents, and decreased neutral detergent fiber(NDF) and acid detergent fiber(ADF) contents of treatments after 60 d of ensiling(P < 0.05). The lactic acid contents in C4 and C3 were significantly higher than that in C1(P <0.05). In summary, mixing fresh rice straw with CSL at addition levels of 4:1(C4) and 3:1(C3) can improve the fermentation quality and nutrient composition of fresh rice straw silage. However, a large proportion of CSL(C3) had a negative impact on the aerobic stability of fresh rice straw.展开更多
During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines...During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines.Numerical simulation based on discrete element theory can be used to explore the characteristics and mechanism of action of deformation and failure of a slope under complex geological and multi-layer mining conditions.By utilising PFC2 D(particle flow code) software,the deformation and failure characteristics of a high-steep slope in Faer Coal Mine in Guizhou Province,China were investigated.Additionally,the mechanism of influence of different numbers of mining layers on the deformation and failure of the high and steep slope was elucidated.The result showed that after the goaf passed by the slope toe,multi-layer mining aggravated the subsidence and deformation of the slope toe:the slope toppled forward as it sank.The toppling of the slope changed the slope structures:the strata in the front of the slope were transformed from anti-dip to down-dip features.Extruded by collapsedtoppled rock mass,the slope toe and the rock mass located in the lower part of the slope toe generally exhibited a locking effect on the slope.Multi-layer mining degraded the overall stability of the slope,in that the total displacement of the slope was much greater than the total mining thickness of the coal seams.Based on the aforementioned research,ideas for preventing and controlling geological disasters during mining operations under a high-steep slope were proposed.展开更多
文摘To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining technology and equipment, which solves four common technical problems that significantly undermine coal mining safety, efficiency, and high recovery and extraction rates. Based on the coupling characteristic between mining-induced stress field and supporting stress field of hydraulic support, we identify six controllable factors in the application of hydraulic support to surrounding rock, and further reveal the relationship between hydraulic support and surrounding rock in terms of the strength, the stiffness, and the stability coupling. Our findings provide a plausible solution to the longwall mining technical problem with 6-8 m mining height. By analyzing the dynamic disequilibrium characteristics between hydraulic support and surrounding rock, we propose the intelligent top coal caving control method and the high-coal-recovery-rate tech- nology for fully mechanized caving faces. With the invention of this technology, China is likely to lead the world in terms of the fully mechanized top coal caving mining technology. We are also the first to employ the intelligent coupling technology between hydraulic support and surrounding rock, and automated mining mode, and supporting system coop- erative control with automatic organization. We develop the comprehensive multi-index intelligence adjusting height decision-making mechanism and three-dimensional navigation automatic adjusting straightness technology based on shearer cutting height memory association, cutting power parameters, vibration, and video information, leading to the first set of intelligent longwall mining technology and equipment for thin seam. Our innovation makes a solid contribution to the revolution of intelligence mining technology. With the innovative use of three-dimensional coupling control principle for surrounding rock, we succ
基金financially supported by the National Dairy Industry and Technology System project (CARS-37)of Agriculture Ministry in China
文摘This study was to determine the fermentation quality of a mixture of corn steep liquor(CSL)(178 g/kg wet basis) and air-dried rice straw(356 g/kg wet basis) after being treated with inoculants of different types of lactic acid bacteria(LAB). The treatments included the addition of no LAB additive(control),which was deionized water; homo-fermentative LAB alone(^(ho)LAB), which was Lactobacillus plantarum alone), and a mixture of homo-fermentative and hetero-fermentative LAB(^(he+ho)LAB), which were L. plantarum, Lactobacillus casei, and Lactobacillus buchneri. The results showed that the inoculation of the mixture of CSL and air-dried rice straw with ^(he+ho)LAB significantly increased the concentration of acetic acid and lactic acid compared with the control(P < 0.05). The addition of ^(he+ho)LAB effectively inhibited the growth of yeast in the silage. The concentration of total lactic acid bacteria in the ^(he+ho)LAB-treated silage was significant higher than those obtained in other groups(P < 0.05). The duration of the aerobic stability of the silages increased from 56 h to >372 h. The control group was the first to spoil, whereas the silage treated with ^(he+ho)LAB remained stable throughout the 372 h period of monitoring. The results demonstrated that the ^(he+ho)LAB could effectively improve the fermentation quality and aerobic stability of the silage.
基金the Key Project of Joint Funds of Yalongjiang River Development of the National Natural Science Foundation of China (No. 50539050)
文摘The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value.
基金Project supported by the National Basic Research Program of China(973 Program,Grant No.2007CB714105)the National Natural Science Foundation of China(Grant No.50909067)
文摘Dam break can cause a significant disaster in the downstream, especially, in a valley with cascade reservoirs, which would aggravate the disaster extent. The experimental studies of the dam-break flow of cascade reservoirs are few and far between at the present, Most of related studies concern the failure of a single dam.. This article presents an experimental study of the characteristics of an instantly filled dam-break flow of cascade reservoirs in a rectangular glass flume with a steep bottom slope. A new method was used to simulate the sudden collapse of the dam. A series of sensors for automatic water-levels were deployed to record the rapid water depth fluctuation. The experimental results show that, the ratio of the initial water depth of the downstream reservoir to that of the upstream reservoir would greatly affect the flood peak water depth in the downstream reservoir area and in the stream channel behind the downstream dam, while the influence of the dam spacing is insignificant. In addition, the comparison between the single reservoir and the cascade reservoirs shows some difference in the dam-break flow pattern and the stage hydrograph at the corresponding gauging points.
基金Project supported by the Program for Changjiang Scholars and Innovative Research Teams in University (PCSIRT), China (No. IRT0412) and the Ministry of Land and Resources, China (No. 2003-2.2-2).
文摘The Grain-for-Green Policy in China could not only improve China's ecological quality, but also influence grain supplies for a short term. Based on data from the detailed nationwide land use survey in 1996 and the steep cultivated land survey update in 2000, a regression model for the driving forces affecting steep cultivated lands was developed, and cluster analysis was used to identify seven steep cultivated land types in order to analyze the grain availability impact of the project with land usage estimates for 2010 and 2030. The results suggested that consecutive days with minimum daily temperature over 10 ℃ and the dominant slope in a county constrained the spatial distribution of steep cultivated lands. In terms of socioeconomic factors, steep cultivated land was a complex interaction of population size, gross domestic production level, and the richness and quality of cultivated lands having slopes less then 15°. The trends for steep cultivated land in 2010 and 2030 were forecast using a driving forces model and China's grain security criteria and showed that the Grain-for-Green Policy at the national level would not cause a grain shortage or threaten food security criteria. However, if steep sloped lands were to be retired from production, some regions would need grain supplements as early as 2010. Also, assuming that only 60% of the cultivated land at the national level was needed, population and economic development pressures in 2030 would require some steep cultivated lands to be used for grain production.
文摘Based on the Pb isotopic mapping of the continent of China and the geochemical data of Proterozoic basements, the steep zones of geochemical blocks of Cathaysia, Yangtze, North China, Central Mongolia, China\|Korea and Jiamusi are established. There are tight relationships between geochemical steep zones and setting of the superlarge deposits along with main mineralization zones. There are Proterozoic basements belonging to different blocks on both sides of geochemical steep zones in which volcanism and SEDEX were comprehensively developed and associated with reconstruction ore emplacement of dynamic metamorphism and magmatism from Jinning period to Mesozoic\|Cenozoic.
文摘Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.11002021)the Doctoral Subject Foundation of the Ministry of Education of China(No.20070008012)the National High Technology Research and Development Program(No.2008AA062104)
文摘Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.
基金funded by the National Dairy Industry and Technology System project (CARS-37)of Agriculture Ministry in China
文摘The object of this study was to determine the proper mixing ratio of fresh rice straw to corn steep liquor(CSL) to obtain a high protein content silage feed. The following experimental silages were generated: the control(C1), composed of fresh rice straw without CSL additive, mixed with CSL in the ratios of 4:1(C4),3:1(C3) and 2:1(C2). Lactic acid bacteria(LAB) inoculant was applied at the rate of 50 mL/kg(fresh basis)of forage to achieve a final application rate of 1 x 10~6 cfu/g of fresh matter(FM). Duplicate silos for each treatment were opened after 0,3, 7,10,20,30,45 and 60 d for microbiological and chemical analysis. The results showed that the addition of CSL significantly increased crude protein(CP) contents, and decreased neutral detergent fiber(NDF) and acid detergent fiber(ADF) contents of treatments after 60 d of ensiling(P < 0.05). The lactic acid contents in C4 and C3 were significantly higher than that in C1(P <0.05). In summary, mixing fresh rice straw with CSL at addition levels of 4:1(C4) and 3:1(C3) can improve the fermentation quality and nutrient composition of fresh rice straw silage. However, a large proportion of CSL(C3) had a negative impact on the aerobic stability of fresh rice straw.
基金funded by the National Natural Science Foundation of China (Grants No. 41877273)the Innovative Research Groups of the National Natural Science Foundation of China (Grants No. 41521002)+1 种基金the State Key Laboratory of Geohazard Disaster Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grants No. SKLGP2017Z016)the Guizhou Provincial Geological Environment Monitoring Institute, and the Faer Coal Mine。
文摘During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines.Numerical simulation based on discrete element theory can be used to explore the characteristics and mechanism of action of deformation and failure of a slope under complex geological and multi-layer mining conditions.By utilising PFC2 D(particle flow code) software,the deformation and failure characteristics of a high-steep slope in Faer Coal Mine in Guizhou Province,China were investigated.Additionally,the mechanism of influence of different numbers of mining layers on the deformation and failure of the high and steep slope was elucidated.The result showed that after the goaf passed by the slope toe,multi-layer mining aggravated the subsidence and deformation of the slope toe:the slope toppled forward as it sank.The toppling of the slope changed the slope structures:the strata in the front of the slope were transformed from anti-dip to down-dip features.Extruded by collapsedtoppled rock mass,the slope toe and the rock mass located in the lower part of the slope toe generally exhibited a locking effect on the slope.Multi-layer mining degraded the overall stability of the slope,in that the total displacement of the slope was much greater than the total mining thickness of the coal seams.Based on the aforementioned research,ideas for preventing and controlling geological disasters during mining operations under a high-steep slope were proposed.