摘要
Dam break can cause a significant disaster in the downstream, especially, in a valley with cascade reservoirs, which would aggravate the disaster extent. The experimental studies of the dam-break flow of cascade reservoirs are few and far between at the present, Most of related studies concern the failure of a single dam.. This article presents an experimental study of the characteristics of an instantly filled dam-break flow of cascade reservoirs in a rectangular glass flume with a steep bottom slope. A new method was used to simulate the sudden collapse of the dam. A series of sensors for automatic water-levels were deployed to record the rapid water depth fluctuation. The experimental results show that, the ratio of the initial water depth of the downstream reservoir to that of the upstream reservoir would greatly affect the flood peak water depth in the downstream reservoir area and in the stream channel behind the downstream dam, while the influence of the dam spacing is insignificant. In addition, the comparison between the single reservoir and the cascade reservoirs shows some difference in the dam-break flow pattern and the stage hydrograph at the corresponding gauging points.
Dam break can cause a significant disaster in the downstream, especially, in a valley with cascade reservoirs, which would aggravate the disaster extent. The experimental studies of the dam-break flow of cascade reservoirs are few and far between at the present, Most of related studies concern the failure of a single dam.. This article presents an experimental study of the characteristics of an instantly filled dam-break flow of cascade reservoirs in a rectangular glass flume with a steep bottom slope. A new method was used to simulate the sudden collapse of the dam. A series of sensors for automatic water-levels were deployed to record the rapid water depth fluctuation. The experimental results show that, the ratio of the initial water depth of the downstream reservoir to that of the upstream reservoir would greatly affect the flood peak water depth in the downstream reservoir area and in the stream channel behind the downstream dam, while the influence of the dam spacing is insignificant. In addition, the comparison between the single reservoir and the cascade reservoirs shows some difference in the dam-break flow pattern and the stage hydrograph at the corresponding gauging points.
基金
Project supported by the National Basic Research Program of China(973 Program,Grant No.2007CB714105)
the National Natural Science Foundation of China(Grant No.50909067)