Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-kno...Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-known. In this study, a fast and effective method was established for simultaneous determination of 10 T&O compounds, including geosmin, MIB, 2,4,6-trichloroanisole (TCA), 2-methylbenzofuran, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), cis-3-hexenyl acetate, trans,trans-2,4-heptadienal, trans, cis-2,6-nonadienal, and trans-2-decenal in water samples by headspace solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. An orthogonal array experimental design was used to optimize the effects of SPME fiber, extraction temperature, stirring rate, NaC1 content, extraction time, and desorption time. The limits of detection ranged from 0.1 to 73 ng/L were lower than or close to the odor threshold concentrations (OTCs). All the 10 T&O compounds were detected in the 14 water samples including surface water, treatment process water and tap water, taken from a waterworks in Lianyungang City, China. MIB and geosmin were detected in most samples at low concentration. Six T&O compounds (IPMP, IBMP, trans,cis-2,6-nonadienal, 2-methylbenzofuran, trans-2-decenal, and TCA) were effectively decreased in water treatment process (sedimentation and filtration) that is different from cis-3-hexenyl acetate, MIB and geosmin. It is noted that the TCA concentrations at 15.9-122.3 ng/L and the trans,cis-2,6-nonadienal concentrations at 79.9-190.1 ng/L were over 10 times higher than their OTCs in tap water. The variation of the analytes in the all water samples, especially distribution system indicated that distribution system cannot be ignored as a T&O compounds source.展开更多
Analytical method for the residues of strobilurins azoxystrobin and pyraclostrobin in blueberries was developed. Fungicide residues were determined by solid-phase microextraction (SPME) cou-pled to gas chromatography ...Analytical method for the residues of strobilurins azoxystrobin and pyraclostrobin in blueberries was developed. Fungicide residues were determined by solid-phase microextraction (SPME) cou-pled to gas chromatography with micro-electron capture detector. The effect of pH values and fiber coatings were studied. The SPME fiber coating selected was 100 μm PDMS. The method is selective with adequate precision and high accuracy and sensitivity. Recoveries ranged within the 100% - 106% range for azoxystrobin, and 96% - 106% range for pyraclostrobin;and detection and quantification limits were 2.0 and 6.0 μg/kg for azoxystrobin, and 26.0 and 86.0 μg/kg for py-raclostrobin, respectively. Statistical parameters indicated the occurrence of matrix effect;con-sequently calibration was performed on spiked samples. Degradation of azoxystrobin and pyra-clostrobin was studied in blueberry fields located in Concordia, Argentina, with fruits from Emerald and Jewel varieties. The degradation of these fungicides in both blueberry varieties studied followed a first order rate kinetics, and the half-life for azoxystrobin was 11.6 and 17.8 days for Emerald and Jewel cultivars;and for pyraclostrobin was 5.5 and 8.0 days, respectively.展开更多
基金supported by the National Natural Science Foundation of China(No.21007077,51290283)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes(No.201201032)
文摘Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-known. In this study, a fast and effective method was established for simultaneous determination of 10 T&O compounds, including geosmin, MIB, 2,4,6-trichloroanisole (TCA), 2-methylbenzofuran, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), cis-3-hexenyl acetate, trans,trans-2,4-heptadienal, trans, cis-2,6-nonadienal, and trans-2-decenal in water samples by headspace solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. An orthogonal array experimental design was used to optimize the effects of SPME fiber, extraction temperature, stirring rate, NaC1 content, extraction time, and desorption time. The limits of detection ranged from 0.1 to 73 ng/L were lower than or close to the odor threshold concentrations (OTCs). All the 10 T&O compounds were detected in the 14 water samples including surface water, treatment process water and tap water, taken from a waterworks in Lianyungang City, China. MIB and geosmin were detected in most samples at low concentration. Six T&O compounds (IPMP, IBMP, trans,cis-2,6-nonadienal, 2-methylbenzofuran, trans-2-decenal, and TCA) were effectively decreased in water treatment process (sedimentation and filtration) that is different from cis-3-hexenyl acetate, MIB and geosmin. It is noted that the TCA concentrations at 15.9-122.3 ng/L and the trans,cis-2,6-nonadienal concentrations at 79.9-190.1 ng/L were over 10 times higher than their OTCs in tap water. The variation of the analytes in the all water samples, especially distribution system indicated that distribution system cannot be ignored as a T&O compounds source.
文摘Analytical method for the residues of strobilurins azoxystrobin and pyraclostrobin in blueberries was developed. Fungicide residues were determined by solid-phase microextraction (SPME) cou-pled to gas chromatography with micro-electron capture detector. The effect of pH values and fiber coatings were studied. The SPME fiber coating selected was 100 μm PDMS. The method is selective with adequate precision and high accuracy and sensitivity. Recoveries ranged within the 100% - 106% range for azoxystrobin, and 96% - 106% range for pyraclostrobin;and detection and quantification limits were 2.0 and 6.0 μg/kg for azoxystrobin, and 26.0 and 86.0 μg/kg for py-raclostrobin, respectively. Statistical parameters indicated the occurrence of matrix effect;con-sequently calibration was performed on spiked samples. Degradation of azoxystrobin and pyra-clostrobin was studied in blueberry fields located in Concordia, Argentina, with fruits from Emerald and Jewel varieties. The degradation of these fungicides in both blueberry varieties studied followed a first order rate kinetics, and the half-life for azoxystrobin was 11.6 and 17.8 days for Emerald and Jewel cultivars;and for pyraclostrobin was 5.5 and 8.0 days, respectively.