The feasibility of using the SOI-MOSFET as a quasi-diode to replace the Schottky-barrier diode in the Schenkel circuit is examined by device simulations primarily and experiments partly. Practical expressions of boost...The feasibility of using the SOI-MOSFET as a quasi-diode to replace the Schottky-barrier diode in the Schenkel circuit is examined by device simulations primarily and experiments partly. Practical expressions of boost-up efficiency for d. c. condition and a. c. condition are proposed and are examined by simulations. It is shown that the SOI-MOSFET-based quasi-diode is a promising device for the Schenkel circuit because high boost-up efficiency can be gained easily. An a. c. analysis indicates that the fully-depleted condition should hold to suppress the floating-body effect for GHz-level RF applications of a quasi-diode.展开更多
A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussia...A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.展开更多
文摘The feasibility of using the SOI-MOSFET as a quasi-diode to replace the Schottky-barrier diode in the Schenkel circuit is examined by device simulations primarily and experiments partly. Practical expressions of boost-up efficiency for d. c. condition and a. c. condition are proposed and are examined by simulations. It is shown that the SOI-MOSFET-based quasi-diode is a promising device for the Schenkel circuit because high boost-up efficiency can be gained easily. An a. c. analysis indicates that the fully-depleted condition should hold to suppress the floating-body effect for GHz-level RF applications of a quasi-diode.
文摘A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.