This paper gives a unified approach to Hsu's two classes of extended GSN pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro's Riordan group, and moreover Hsu-Wang transfer ...This paper gives a unified approach to Hsu's two classes of extended GSN pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro's Riordan group, and moreover Hsu-Wang transfer theorem, Drown-Sprugnoli transfer formula and generalized Brown transfer lemma which display some transfer methods of different kinds of Hsu-Riordau arrays and identities respectively.展开更多
In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r&...In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r</sub> (α,β) with Changhee sequences, Daehee sequences, Degenerate Changhee-Genoocchi sequences, Two kinds of degenerate Stirling numbers. Using Riordan arrays, we explore interesting relations between these polynomials, Apostol Bernoulli sequences, Apostol Euler sequences, Apostol Genoocchi sequences.展开更多
In this paper, by the classical method of Riordan arrays, establish several general involving higher-order Changhee numbers and polynomials, which are related to special polynomials and numbers. From those numbers, we...In this paper, by the classical method of Riordan arrays, establish several general involving higher-order Changhee numbers and polynomials, which are related to special polynomials and numbers. From those numbers, we derive some interesting and new identities.展开更多
The present paper is concerned with Bailey lemma which has been proved to be useful in the studies of hypergeometric function and Ramannujan-Rogers identities, etc. We will show that the Bailey lemma in ordinary form ...The present paper is concerned with Bailey lemma which has been proved to be useful in the studies of hypergeometric function and Ramannujan-Rogers identities, etc. We will show that the Bailey lemma in ordinary form is in fact a Riordan chain of a particular Riordan group.展开更多
In this paper, using generating functions and Riordan arrays, we get some identities relating Genocchi numbers with Stirling numbers and Cauchy numbers.
In this paper, using exponential Riordan arrays, we investigate the Bessel numbers and Bessel matrices. By exploring links between the Bessel matrices, the Stirling matrices and the degenerate Stirling matrices, we sh...In this paper, using exponential Riordan arrays, we investigate the Bessel numbers and Bessel matrices. By exploring links between the Bessel matrices, the Stirling matrices and the degenerate Stirling matrices, we show that the Bessel numbers are special case of the degenerate Stirling numbers, and derive explicit formulas for the Bessel numbers in terms of the Stirling numbers and binomial coefficients.展开更多
In this paper we consider the enumeration of subsets of the set, say Dm, of those Dyck paths of arbitrary length with maximum peak height equal to m and having a strictly increasing sequence of peak height (as one go...In this paper we consider the enumeration of subsets of the set, say Dm, of those Dyck paths of arbitrary length with maximum peak height equal to m and having a strictly increasing sequence of peak height (as one goes along the path). Bijections and the methods of generating trees together with those of Riordan arrays are used to enumerate these subsets, resulting in many combinatorial structures counted by such well-known sequences as the Catalan nos., Narayana nos., Motzkin nos., Fibonacci nos., Schroeder nos., and the unsigned Stirling numbers of the first kind. In particular, we give two configurations which do not appear in Stanley's well-known list of Catalan structures.展开更多
Let the numbers be defined by , where and are the exponential complete Bell polynomials. In this paper, by means of the methods of Riordan arrays, we establish general identities involving the numbers , binomial coeff...Let the numbers be defined by , where and are the exponential complete Bell polynomials. In this paper, by means of the methods of Riordan arrays, we establish general identities involving the numbers , binomial coefficients and inverse of binomial coefficients. From these identities, we deduce some identities involving binomial coefficients, Harmonic numbers and the Euler sum identities. Furthermore, we obtain the asymptotic values of some summations associated with the numbers by Darboux’s method.展开更多
An operator on formal power series of the form S μS , where μ is an invertible power series, and σ is a series of the form?t+(t2)?is called a unipotent substitution with pre-function. Such operators, denoted by a p...An operator on formal power series of the form S μS , where μ is an invertible power series, and σ is a series of the form?t+(t2)?is called a unipotent substitution with pre-function. Such operators, denoted by a pair (μ ,σ )? , form a group. The objective of this contribution is to show that it is possible to define a generalized powers for such operators, as for instance fractional powers σ for every .展开更多
文摘This paper gives a unified approach to Hsu's two classes of extended GSN pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro's Riordan group, and moreover Hsu-Wang transfer theorem, Drown-Sprugnoli transfer formula and generalized Brown transfer lemma which display some transfer methods of different kinds of Hsu-Riordau arrays and identities respectively.
文摘In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r</sub> (α,β) with Changhee sequences, Daehee sequences, Degenerate Changhee-Genoocchi sequences, Two kinds of degenerate Stirling numbers. Using Riordan arrays, we explore interesting relations between these polynomials, Apostol Bernoulli sequences, Apostol Euler sequences, Apostol Genoocchi sequences.
文摘In this paper, by the classical method of Riordan arrays, establish several general involving higher-order Changhee numbers and polynomials, which are related to special polynomials and numbers. From those numbers, we derive some interesting and new identities.
文摘The present paper is concerned with Bailey lemma which has been proved to be useful in the studies of hypergeometric function and Ramannujan-Rogers identities, etc. We will show that the Bailey lemma in ordinary form is in fact a Riordan chain of a particular Riordan group.
文摘In this paper, using generating functions and Riordan arrays, we get some identities relating Genocchi numbers with Stirling numbers and Cauchy numbers.
基金Supported by the Natural Science Foundation of Gansu Province (Grant No.1010RJZA049)
文摘In this paper, using exponential Riordan arrays, we investigate the Bessel numbers and Bessel matrices. By exploring links between the Bessel matrices, the Stirling matrices and the degenerate Stirling matrices, we show that the Bessel numbers are special case of the degenerate Stirling numbers, and derive explicit formulas for the Bessel numbers in terms of the Stirling numbers and binomial coefficients.
文摘In this paper we consider the enumeration of subsets of the set, say Dm, of those Dyck paths of arbitrary length with maximum peak height equal to m and having a strictly increasing sequence of peak height (as one goes along the path). Bijections and the methods of generating trees together with those of Riordan arrays are used to enumerate these subsets, resulting in many combinatorial structures counted by such well-known sequences as the Catalan nos., Narayana nos., Motzkin nos., Fibonacci nos., Schroeder nos., and the unsigned Stirling numbers of the first kind. In particular, we give two configurations which do not appear in Stanley's well-known list of Catalan structures.
文摘Let the numbers be defined by , where and are the exponential complete Bell polynomials. In this paper, by means of the methods of Riordan arrays, we establish general identities involving the numbers , binomial coefficients and inverse of binomial coefficients. From these identities, we deduce some identities involving binomial coefficients, Harmonic numbers and the Euler sum identities. Furthermore, we obtain the asymptotic values of some summations associated with the numbers by Darboux’s method.
文摘An operator on formal power series of the form S μS , where μ is an invertible power series, and σ is a series of the form?t+(t2)?is called a unipotent substitution with pre-function. Such operators, denoted by a pair (μ ,σ )? , form a group. The objective of this contribution is to show that it is possible to define a generalized powers for such operators, as for instance fractional powers σ for every .