Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power ser...Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.展开更多
Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]]...Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.展开更多
基金TRAPOYT(200280)the Cultivation Fund(704004)of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.
基金The Youth Foundation(QN2012-14)of Hexi University
文摘Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.