期刊文献+

Principal Quasi-Baerness of Rings of Generalized Power Series 被引量:1

Principal Quasi-Baerness of Rings of Generalized Power Series
下载PDF
导出
摘要 Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R. Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.
作者 刘仲奎
出处 《Northeastern Mathematical Journal》 CSCD 2007年第4期283-292,共10页 东北数学(英文版)
基金 TRAPOYT(200280) the Cultivation Fund(704004)of the Key Scientific and Technical Innovation Project,Ministry of Education of China
关键词 right p.q.Baer ring ring of generalized power series generalized join right p.q.Baer ring, ring of generalized power series, generalized join
  • 相关文献

参考文献3

二级参考文献38

  • 1薛卫民.环的拟对偶及其推广[J].福建师范大学学报(自然科学版),1993,9(2):9-12. 被引量:1
  • 2[1]Ribenboim, P., Noetherian rings of generalized power series [J], J. Pure Appl. Algebra,79(1992), 293-312. 被引量:1
  • 3[2]Ribenboim, P., Rings of generalized power series Ⅱ: units and zero-divisors [J], J. Algebra, 168(1994), 71-89. 被引量:1
  • 4[3]Ribenboim, P., Special properties of generalized power series [J], J. Algebra, 173(1995),566-586. 被引量:1
  • 5[4]Ribenboim, P., Semisimple rings and von Neumann regular rings of generalized powerseries [J], J. Algebra, 198(1997), 327-338. 被引量:1
  • 6[5]Kaplansky, Ⅰ., Rings of operators [M], Benjamin: New York, 1968. 被引量:1
  • 7[6]Clark, W. E., Twisted matrix units semigroup algebras [J], Duke Math. J., 34(1967),417-423. 被引量:1
  • 8[7]Faith, C., Injective quotient rings of commutative rings [A], in: Module Theory, LectureNotes in Mathematics [C], Vol. 700, Springer, Berlin, 1979, 151-203. 被引量:1
  • 9[8]Pollingher, A. & Zaks A., On Baer and quasi-Baer rings [J], Duke Math. J., 37(1970),127-138. 被引量:1
  • 10[9]Armendariz, E. P., A note on extensions of Baer and p.p.-rings [J], J. Austral. Math.Soc., 18(1974), 470-473. 被引量:1

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部