The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we...The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we present the fractional derivatives, specifically, the Riemann-Liouville, Liouville, Caputo, Weyl and Riesz versions are discussed. The so-called fundamental theorem of fractional calculus is presented and discussed in all these different versions.展开更多
In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study h...In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.展开更多
In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Rie...In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Riesz derivative of orderβ∈(1,2]. We propose an implicit finite difference approximation for RSFRDE.The stability and convergence of the finite difference approximations are analyzed.Numerical results are found in good agreement with the theoretical analysis.展开更多
The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. ...The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order is denoted by β∈ and ?is devoted to the space fractional order. The time fractional advection dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models for some values of ?with ?, ?while the Cauchy case as ?and the classical case as ?with ?are studied separately. I compare the numerical results of these models for different values of ?and ?and for some other related changes. The approximate solutions of these models are also discussed as a random walk with or without a memory depending on the value of . Then I prove that the discrete solution in the Fourierlaplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding fractional differential equations for all the fractional values of ?and .展开更多
基金Supported by the Natural Science Foundation of Fujian Province(2008J0204)Fujian Provincial Department of Education Category the Projects(JA09242)Wuyi University Special Research Fund for Young Teachers(xq201022)
文摘The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we present the fractional derivatives, specifically, the Riemann-Liouville, Liouville, Caputo, Weyl and Riesz versions are discussed. The so-called fundamental theorem of fractional calculus is presented and discussed in all these different versions.
文摘In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant 10271098 the Australian Research Council grant LP0348653.
文摘In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Riesz derivative of orderβ∈(1,2]. We propose an implicit finite difference approximation for RSFRDE.The stability and convergence of the finite difference approximations are analyzed.Numerical results are found in good agreement with the theoretical analysis.
文摘The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order is denoted by β∈ and ?is devoted to the space fractional order. The time fractional advection dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models for some values of ?with ?, ?while the Cauchy case as ?and the classical case as ?with ?are studied separately. I compare the numerical results of these models for different values of ?and ?and for some other related changes. The approximate solutions of these models are also discussed as a random walk with or without a memory depending on the value of . Then I prove that the discrete solution in the Fourierlaplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding fractional differential equations for all the fractional values of ?and .