期刊文献+

二维、三维空间Riesz分数阶扩散方程的基本解(英文) 被引量:5

Fundamental solutions of fractional-in-space diffusion equation with Riesz fractional derivative in two and three dimensions
原文传递
导出
摘要 讨论二维、三维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义二维、三维分数阶拉普拉斯算子,并给出分数阶拉普拉斯算子与Riesz分数阶导数的关系。最后用谱表示法导出二维、三维空间Riesz分数阶扩散方程在齐次和非齐次情况下的在有界区间上满足一定初边值条件的基本解。 The fundamental solutions of fractional-in-space diffusion equation are considered with Riesz fractional deriv- ative (RFDE) in two and three dimensions. The existing definitions of the fractional Laplacian ( two dimensions and three dimensions) are investigated and discussed by using eigenfunction expansion, and the relations between fractional Laplacian and Riesz fractional derivative are given. Finally, the fundamental solutions of homogeneous and non-homo- geneous RFDE with an initial and boundary condition are derived on a finite domain using a spectral representation.
作者 王学彬
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第8期23-30,37,共9页 Journal of Shandong University(Natural Science)
基金 Supported by the Natural Science Foundation of Fujian Province(2008J0204) Fujian Provincial Department of Education Category the Projects(JA09242) Wuyi University Special Research Fund for Young Teachers(xq201022)
关键词 Riesz分数阶导数 空间分数阶扩散方程 Rimann-Liouville分数阶导数 Riesz fractional derivative fractional-in-space diffusion equation Rimann-Liouville fractional derivative
  • 相关文献

参考文献13

  • 1YANG Qianqian, LIU Fawang, TURNER I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives [ J ]. Applied Mathematical Modelling, 2010, 34 ( 1 ) : 200-218. 被引量:1
  • 2ILIC M, LIU Fawang, TURNER I, ANH V V. Numerical approximation of a fractional-in-space diffusion equation[J]. Fract Caculus Appl Anal, 2005, 8(3) :323-341. 被引量:1
  • 3SHEN Shujun, LIU Fawang, ANH V V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation [ J ]. Numerical Algorithms, 2011, 56 (3) :383-403. 被引量:1
  • 4SHEN Shujun, LIU Fawang. The fundamental solution and numerical solution of the Riesz fractional advection-dipersion equation [ J ]. Journal of Applied Mathematics, 2008, 73:850-872. 被引量:1
  • 5CHEN Jinhuang, LIU Fawang, TURNER I, et al. The Fundamental and numerical solutions of the Riesz space-fractional reaction-dispersion equation[ J]. Anziam, 2008, 50:45-57. 被引量:1
  • 6LENZI E K, MENDES R S, KWOK S F. Nonlinear fractional diffusion equation: exact results[ J ]. Journal of Mathematical physics, 2005, 46:35-61. 被引量:1
  • 7FRANCESCO Mainardi, YURI Luchko, GIANNI Pagnin. The fundamental solution of the space-time fractional diffusion equation[ J ], Fractional Caculus and Applied Analysis, 2009, 4 (21) :153-192. 被引量:1
  • 8HUANG Fenghui, LIU Fawang. The space-time fractional diffusion equation with Caputo derivatives [J]. App Math computing 2005, 19(12) : 179-190. 被引量:1
  • 9HUANG Fenghui, LIU Fawang. The time fractional diffusion equation and the advection-dispersion equation [ J ]. Anziam, 2005, 46:317-330. 被引量:1
  • 10SCHNEIDER W, SCHNEIDER R, WALTER Wyss. Fractional diffusion and wave equations [J]. Math Phys, 1989, 30 ( 1 ) : 134-14-4. 被引量:1

同被引文献42

  • 1王学彬.两项分数阶微分方程在控制系统的应用[J].南平师专学报,2005,24(2):16-19. 被引量:8
  • 2王学彬.求解多项分数阶常微分方程的数值方法[J].南平师专学报,2006,25(4):14-19. 被引量:2
  • 3PODLUBNY I. Fractional differential equations[M]. New York: Academic Press, 1999. 被引量:1
  • 4SAMKO S G, KILBAS A A, MARICHEV O I. Frac- tional integrals and derivatives:theory and applications [M]. Amsterdam : Cordon and Breach, 1993. 被引量:1
  • 5OLDHAM K B,SPANIER J. The fractional calculus [M]. New York and London: Academic Press, 1974. 被引量:1
  • 6MILLER K S, ROSS B. An introduction to the frac tional calculus and fractional differential equations[M]. New York: John Wiley,1993. 被引量:1
  • 7YANG Qianqian,LIU Fawang,TURNER I. Numeri- cal methods for fractional partial differential equations with Riesz space fractional derivatives [J]. Applied Mathematical Modelling, 2010,34: 200-218. 被引量:1
  • 8ILIC M,LIU Fawang,TURNER I,et al. Numerical approximation of a fractional-in space diffusion equation[J]. Fract Caculus Appl Anal,1998,1(2) :167-19L. 被引量:1
  • 9SHEN Shujun, LIU Fawang, ANH V V. Numerical approximations and solution techniques for the space time Riesz-Caputo fractional advection-diffusion equa- tion[J]. Numerical Algorithms, 2011,56 (3) : 383-403. 被引量:1
  • 10SHEN Shujun,LIU Fawang. The fundamental solution and numerical solution of the Riesz fractional advec- tion-dispersion equation[J]. Journal of Applied Mathe- matics, 2008,73 : 850-872. 被引量:1

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部