为解决遥感图像小目标检测中目标特征信息量少、定位困难等难题,提出一种基于特征融合与注意力机制的遥感图像小目标检测算法FFAM-YOLO(Feature Fusion and Attention Mechanism YOLO)。该算法首先针对主干网络特征提取有效信息量少、...为解决遥感图像小目标检测中目标特征信息量少、定位困难等难题,提出一种基于特征融合与注意力机制的遥感图像小目标检测算法FFAM-YOLO(Feature Fusion and Attention Mechanism YOLO)。该算法首先针对主干网络特征提取有效信息量少、特征图信息表征能力弱的问题,构造特征增强模块(FEM)以融合较低层级特征图中多重感受野特征,提升算法主干网络的目标特征提取能力;其次,主干网络提取得到高低层级特征图后,建立重构算法的高低层级特征融合结构,利用特征融合模块(FFM)显著增强小目标的特征信息;在增强的有效通道注意力机制(E-ECA)与空间注意力模块(SAM)所组成的级联注意力机制(ESM)作用下,可更精确地捕获小目标特征;最后在输出的两路特征图上进行小目标检测并输出结果。实验结果表明,基于构建的遥感图像小目标数据集USOD(Unicorn Small Object Dataset),所提算法的查准率达到91.9%,查全率达到83.5%,检测框与真实框之间的交并比阈值(IoU)为0.5时的平均精度(AP)为89%,IoU为0.5∶0.95时的AP达到32.6%,检测速率达到120 frame/s,具有一定的鲁棒性和实时性。展开更多
文摘为解决遥感图像小目标检测中目标特征信息量少、定位困难等难题,提出一种基于特征融合与注意力机制的遥感图像小目标检测算法FFAM-YOLO(Feature Fusion and Attention Mechanism YOLO)。该算法首先针对主干网络特征提取有效信息量少、特征图信息表征能力弱的问题,构造特征增强模块(FEM)以融合较低层级特征图中多重感受野特征,提升算法主干网络的目标特征提取能力;其次,主干网络提取得到高低层级特征图后,建立重构算法的高低层级特征融合结构,利用特征融合模块(FFM)显著增强小目标的特征信息;在增强的有效通道注意力机制(E-ECA)与空间注意力模块(SAM)所组成的级联注意力机制(ESM)作用下,可更精确地捕获小目标特征;最后在输出的两路特征图上进行小目标检测并输出结果。实验结果表明,基于构建的遥感图像小目标数据集USOD(Unicorn Small Object Dataset),所提算法的查准率达到91.9%,查全率达到83.5%,检测框与真实框之间的交并比阈值(IoU)为0.5时的平均精度(AP)为89%,IoU为0.5∶0.95时的AP达到32.6%,检测速率达到120 frame/s,具有一定的鲁棒性和实时性。