Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE ...Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.展开更多
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such a...For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications.展开更多
基金supported by the National Hightech R&D Program of China(2014AA01A704)the Natural Science Foundation of China(61201135)111 Project(B08038)
文摘Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.
文摘For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications.