Relative flexibility between the hamstring and lumbar extensor muscles, which can be evaluated using lumbopelvic curvature during active knee extension in sitting, can sometimes be assessed in physical therapy. Howeve...Relative flexibility between the hamstring and lumbar extensor muscles, which can be evaluated using lumbopelvic curvature during active knee extension in sitting, can sometimes be assessed in physical therapy. However, reliability for its quantitative measure has not been established yet and its establishment was the aim of the current study. Twenty-seven individuals with clinically tight hamstring muscles were recruited. On two separate sessions, the lumbopelvic curvature was evaluated in sitting when the right knee was moved from 90° flexion to 10° flexion on 15 occasions using a flexible ruler by two examiners on Day 1 and one on Day 2. Lines drawn tangential to the lumbopelvic curvature were traced at T12 and S2 vertebral levels and the angle between the two vertical lines was calculated. Using Day 1 data, the minimum number of repetitions and inter-examiner reliability were assessed. Inter-session reliability was also examined. As a result, there was no statistical difference (P?> 0.05) in the mean absolute difference between the mean value of N-1 and N repetitions (6 ≤ N ≤ 15) in the lumbopelvic curvature angle, indicating that five was considered the minimum number of repetitions. Intraclass correlation coefficient (ICC)(1, 5)?for the inter-session reliability and ICC(2, 5)?for the inter-examiner reliability was 0.97 and 0.93, respectively, indicating excellent reliability. The measure for the lumbopelvic curvature during active knee extension in sitting, which was established in the current study, will be a foundation for further research regarding the relative flexibility of the lumbar and adjunct regions.展开更多
In a previous study, we established reliability of a method for determining the angle of lumbopelvic sagittal alignment during active knee extension in sitting (AKEiS) using a flexible ruler and image analysis softwar...In a previous study, we established reliability of a method for determining the angle of lumbopelvic sagittal alignment during active knee extension in sitting (AKEiS) using a flexible ruler and image analysis software (2-point-Method). In addition to this method, a flexible ruler can also be used to measure lumbopelvic sagittal alignment without image analysis software. This study primarily aimed to investigate the minimum number of repetitions, inter-session reliability and inter-examiner reliability of two alternative methods of measurement in a secondary analysis of our previous study. A flexible ruler was used to measure lumbopelvic curvature during AKEiS when the knee reached 10° flexion from 27 individuals with clinically tight hamstring muscles and subsequently analyzed. Lumbopelvic sagittal alignment was evaluated for the region between T12 and S2 using the maximum depth to the curvature (Max-Method) or depth to the curvature at the middle point between T12 and S2 vertebral levels (Mid-Method). It was determined that four repetitions for the Max-Method and 11 repetitions for the Mid-Method were required for the minimum number of repetitions, respectively. Inter-session reliability and inter-examiner reliability were assessed using Intraclass Correlation Coefficients and were 0.91 and 0.91 for the Max-Method and 0.90 and 0.91 for the Mid-Method, respectively. The current study suggests that the Mid-Method would not be recommended for use in the clinical setting as 11 repetitions of data sampling is required. The 2-point-Method or Max-Method may be promising but the ideal measurement method will be identified when the validity of these methods has been established.展开更多
An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the as...An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the assembly model, the components in the assembly can bedivided into partially constrained components and completely con-strained components in the firststage, and then geometric precedence relation for every component is generated automatically.According to the result of the first stage, the second stage determines and constructs allprecedence graphs. The algorithms of these two stages proposed are verified by two assemblyexamples.展开更多
文摘Relative flexibility between the hamstring and lumbar extensor muscles, which can be evaluated using lumbopelvic curvature during active knee extension in sitting, can sometimes be assessed in physical therapy. However, reliability for its quantitative measure has not been established yet and its establishment was the aim of the current study. Twenty-seven individuals with clinically tight hamstring muscles were recruited. On two separate sessions, the lumbopelvic curvature was evaluated in sitting when the right knee was moved from 90° flexion to 10° flexion on 15 occasions using a flexible ruler by two examiners on Day 1 and one on Day 2. Lines drawn tangential to the lumbopelvic curvature were traced at T12 and S2 vertebral levels and the angle between the two vertical lines was calculated. Using Day 1 data, the minimum number of repetitions and inter-examiner reliability were assessed. Inter-session reliability was also examined. As a result, there was no statistical difference (P?> 0.05) in the mean absolute difference between the mean value of N-1 and N repetitions (6 ≤ N ≤ 15) in the lumbopelvic curvature angle, indicating that five was considered the minimum number of repetitions. Intraclass correlation coefficient (ICC)(1, 5)?for the inter-session reliability and ICC(2, 5)?for the inter-examiner reliability was 0.97 and 0.93, respectively, indicating excellent reliability. The measure for the lumbopelvic curvature during active knee extension in sitting, which was established in the current study, will be a foundation for further research regarding the relative flexibility of the lumbar and adjunct regions.
文摘In a previous study, we established reliability of a method for determining the angle of lumbopelvic sagittal alignment during active knee extension in sitting (AKEiS) using a flexible ruler and image analysis software (2-point-Method). In addition to this method, a flexible ruler can also be used to measure lumbopelvic sagittal alignment without image analysis software. This study primarily aimed to investigate the minimum number of repetitions, inter-session reliability and inter-examiner reliability of two alternative methods of measurement in a secondary analysis of our previous study. A flexible ruler was used to measure lumbopelvic curvature during AKEiS when the knee reached 10° flexion from 27 individuals with clinically tight hamstring muscles and subsequently analyzed. Lumbopelvic sagittal alignment was evaluated for the region between T12 and S2 using the maximum depth to the curvature (Max-Method) or depth to the curvature at the middle point between T12 and S2 vertebral levels (Mid-Method). It was determined that four repetitions for the Max-Method and 11 repetitions for the Mid-Method were required for the minimum number of repetitions, respectively. Inter-session reliability and inter-examiner reliability were assessed using Intraclass Correlation Coefficients and were 0.91 and 0.91 for the Max-Method and 0.90 and 0.91 for the Mid-Method, respectively. The current study suggests that the Mid-Method would not be recommended for use in the clinical setting as 11 repetitions of data sampling is required. The 2-point-Method or Max-Method may be promising but the ideal measurement method will be identified when the validity of these methods has been established.
基金This project is supported by National Natural Science Foundation of China(No.59990470,No.59725514,No.59985004)and Robotics Laboratory,Chinese Academy of Sciences Foundation(No.RL200006)
文摘An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the assembly model, the components in the assembly can bedivided into partially constrained components and completely con-strained components in the firststage, and then geometric precedence relation for every component is generated automatically.According to the result of the first stage, the second stage determines and constructs allprecedence graphs. The algorithms of these two stages proposed are verified by two assemblyexamples.