Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disorders including focal ische...Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disorders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar formation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insiehts for astrocvte-based cell therapy in stroke.展开更多
目的利用成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型,探讨内皮素-1(ET1)与反应性星形胶质细胞增殖之间的关系。方法建立成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型,用100 n M ET1和5μM BQ788(内皮素受体B的拮抗剂...目的利用成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型,探讨内皮素-1(ET1)与反应性星形胶质细胞增殖之间的关系。方法建立成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型,用100 n M ET1和5μM BQ788(内皮素受体B的拮抗剂)处理反应性星形胶质细胞48 h,通过免疫荧光的方法对各实验组中星形胶质细胞的标记分子Vimentin及Brdu进行检测,以确定ET1对反应性星形胶质细胞增殖的影响。结果 ET1组中星形胶质细胞的数量明显增加,Brdu阳性细胞占星形胶质细胞的平均百分比(19.41%)高于正常对照组(3.28%,P<0.01);而ET1+BQ788组中Brdu阳性细胞数占星形胶质细胞的平均百分比为10.38%,明显低于ET1组(19.41%,P<0.01)。结论在成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型中,ET1可刺激反应性星形胶质细胞的增殖,ET1受体endothelin B的拮抗剂BQ788可有效抑制ET1对反应性星形胶质细胞的促增殖效应。展开更多
Estrogen receptors (ERα and ERβ) in the brain play critical roles in maintaining brain tissue homeostasis and in tissue repair after injury. Growth of cancer metastasis in the brain is a constant damaging process. T...Estrogen receptors (ERα and ERβ) in the brain play critical roles in maintaining brain tissue homeostasis and in tissue repair after injury. Growth of cancer metastasis in the brain is a constant damaging process. The role of ERs of the host in the progression of cancer brain metastasis is unknown. To determine the role of ERβ of host in the progression of lung cancer brain metastasis, we used an isogenic murine lung cancer cell line, Lewis lung carcinoma cells (3LL), to produce orthotopic lung cancer brain metastases in wild type and ERβ knockout (ERβ-/-) mice. In the wild type mice, we found that ERα and ERβ appeared in the tumor associated reactive astrocytes at 24hr after injection of tumor cells, and ERβ remained thereafter while ERα disappeared after 1 week. The metastasis bearing ERβ-/- mice survived significantly longer than the wild type mice. To further test the role of ERβ of reactive astrocytes in the survival of cancer cells, we knocked down ERβ in cultured actrocytes using shRNA and performed 3D co-culture with 3LL cells in the presence/absence of chemotherapeutic agents, oxaliplatin and 5-fluorouracil. We found that loss of ERβ in astrocytes significantly reduced the survivability of 3LL cells co-cultured with astrocytes. It is concluded that ERβ of host, especially ERβ in reactive astrocytes, promotes the progression of lung cancer brain metastasis and ERβ might be a potential therapeutic target for lung cancer brain metastasis.展开更多
基金supported by the National Institutes of Health[Grant no.R01NS069726]the American Heart Association Grant in Aid Grant[Grant no.13GRNT17020004]to SD
文摘Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disorders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar formation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insiehts for astrocvte-based cell therapy in stroke.
文摘目的利用成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型,探讨内皮素-1(ET1)与反应性星形胶质细胞增殖之间的关系。方法建立成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型,用100 n M ET1和5μM BQ788(内皮素受体B的拮抗剂)处理反应性星形胶质细胞48 h,通过免疫荧光的方法对各实验组中星形胶质细胞的标记分子Vimentin及Brdu进行检测,以确定ET1对反应性星形胶质细胞增殖的影响。结果 ET1组中星形胶质细胞的数量明显增加,Brdu阳性细胞占星形胶质细胞的平均百分比(19.41%)高于正常对照组(3.28%,P<0.01);而ET1+BQ788组中Brdu阳性细胞数占星形胶质细胞的平均百分比为10.38%,明显低于ET1组(19.41%,P<0.01)。结论在成年SD大鼠脊髓损伤原代培养的反应性星形胶质细胞模型中,ET1可刺激反应性星形胶质细胞的增殖,ET1受体endothelin B的拮抗剂BQ788可有效抑制ET1对反应性星形胶质细胞的促增殖效应。
文摘Estrogen receptors (ERα and ERβ) in the brain play critical roles in maintaining brain tissue homeostasis and in tissue repair after injury. Growth of cancer metastasis in the brain is a constant damaging process. The role of ERs of the host in the progression of cancer brain metastasis is unknown. To determine the role of ERβ of host in the progression of lung cancer brain metastasis, we used an isogenic murine lung cancer cell line, Lewis lung carcinoma cells (3LL), to produce orthotopic lung cancer brain metastases in wild type and ERβ knockout (ERβ-/-) mice. In the wild type mice, we found that ERα and ERβ appeared in the tumor associated reactive astrocytes at 24hr after injection of tumor cells, and ERβ remained thereafter while ERα disappeared after 1 week. The metastasis bearing ERβ-/- mice survived significantly longer than the wild type mice. To further test the role of ERβ of reactive astrocytes in the survival of cancer cells, we knocked down ERβ in cultured actrocytes using shRNA and performed 3D co-culture with 3LL cells in the presence/absence of chemotherapeutic agents, oxaliplatin and 5-fluorouracil. We found that loss of ERβ in astrocytes significantly reduced the survivability of 3LL cells co-cultured with astrocytes. It is concluded that ERβ of host, especially ERβ in reactive astrocytes, promotes the progression of lung cancer brain metastasis and ERβ might be a potential therapeutic target for lung cancer brain metastasis.