A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties....A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties. Although 3 D random finite element analysis can well reflect the spatial variability of soil properties, it is often time-consuming for probabilistic stability analysis. For this reason, we also examined the least advantageous(or most pessimistic) cross-section of the studied slope. The concept of"most pessimistic" refers to the minimal cross-sectional average of undrained shear strength. The selection of the most pessimistic section is achievable by simulating the undrained shear strength as a 3 D random field. Random finite element analysis results suggest that two-dimensional(2 D) plane strain analysis based the most pessimistic cross-section generally provides a more conservative result than the corresponding full 3 D analysis. The level of conservativeness is around 15% on average. This result may have engineering implications for slope design where computationally tractable 2 D analyses based on the procedure proposed in this study could ensure conservative results.展开更多
The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical ...The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.展开更多
Cuckoo search (CS), inspired by the obligate brood parasitic behavior of some cuckoo species, iteratively uses L6vy flights random walk (LFRW) and biased/selective random walk (BSRW) to search for new solutions....Cuckoo search (CS), inspired by the obligate brood parasitic behavior of some cuckoo species, iteratively uses L6vy flights random walk (LFRW) and biased/selective random walk (BSRW) to search for new solutions. In this study, we seek a simple strategy to set the scaling factor in LFRW, which can vary the scaling factor to achieve better performance. However, choosing the best scaling factor for each problem is intractable. Thus, we propose a varied scal- ing factor (VSF) strategy that samples a value from the range [0,1] uniformly at random for each iteration. In addition, we integrate the VSF strategy into several advanced CS vari- ants. Extensive experiments are conducted on three groups of benchmark functions including 18 common test functions, 25 functions proposed in CEC 2005, and 28 functions intro- duced in CEC 2013. Experimental results demonstrate the ef- fectiveness of the VSF strategy.展开更多
基金supported by the Key Research&Development Plan Science and Technology Cooperation Programme of Hainan Province,China(Grant No.ZDYF2016226)the National Natural Science Foundation of China(Grant Nos.51879203,51808421)
文摘A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties. Although 3 D random finite element analysis can well reflect the spatial variability of soil properties, it is often time-consuming for probabilistic stability analysis. For this reason, we also examined the least advantageous(or most pessimistic) cross-section of the studied slope. The concept of"most pessimistic" refers to the minimal cross-sectional average of undrained shear strength. The selection of the most pessimistic section is achievable by simulating the undrained shear strength as a 3 D random field. Random finite element analysis results suggest that two-dimensional(2 D) plane strain analysis based the most pessimistic cross-section generally provides a more conservative result than the corresponding full 3 D analysis. The level of conservativeness is around 15% on average. This result may have engineering implications for slope design where computationally tractable 2 D analyses based on the procedure proposed in this study could ensure conservative results.
文摘The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models.
文摘Cuckoo search (CS), inspired by the obligate brood parasitic behavior of some cuckoo species, iteratively uses L6vy flights random walk (LFRW) and biased/selective random walk (BSRW) to search for new solutions. In this study, we seek a simple strategy to set the scaling factor in LFRW, which can vary the scaling factor to achieve better performance. However, choosing the best scaling factor for each problem is intractable. Thus, we propose a varied scal- ing factor (VSF) strategy that samples a value from the range [0,1] uniformly at random for each iteration. In addition, we integrate the VSF strategy into several advanced CS vari- ants. Extensive experiments are conducted on three groups of benchmark functions including 18 common test functions, 25 functions proposed in CEC 2005, and 28 functions intro- duced in CEC 2013. Experimental results demonstrate the ef- fectiveness of the VSF strategy.