正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8...正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.展开更多
A set of improved and efficient radiation parameterization schemes for surface radiation balance components under clear- sky conditions was developed by using general surface measurements and MODIS data. The set of sc...A set of improved and efficient radiation parameterization schemes for surface radiation balance components under clear- sky conditions was developed by using general surface measurements and MODIS data. The set of schemes was then adapted for regions similar to the present study sites under different grazing intensities and varying degrees of drought in the semiarid grasslands of Inner Mongolia. Specifically, we mainly improved two schemes for estimating downward shortwave and longwave radiation at the surface, which could be applied to regions with certain degrees of drought. The validation datasets were from ground-based observations at various grazing sites during the growing season (May to September) of different drought years, 2005 and 2006. Through comparisons of parameterized versus measured radiation values, the increased or modified factors in the original schemes demonstrated improved estimation accuracy, and the rationalities of input parameters and variables were analyzed. The regional instantaneous net radiation estimations had root-mean-square errors of less than 30 W m-2 compared with ground measurements at the sites during the study period. The statistical results showed the improved schemes are suitable for estimating surface net radiation in regional semiarid areas during the growing season. Analyses of the sensitivity of the schemes to corresponding variables were conducted to ascertain the major error sources of the schemes and potential variables for improving the performance of the schemes in agreement with observations.展开更多
By using the climatological calculating method for each component of slope surface net radiation proposed by the authors,calculations and analyses are done of the distribution features of slope net radiation in China ...By using the climatological calculating method for each component of slope surface net radiation proposed by the authors,calculations and analyses are done of the distribution features of slope net radiation in China with emphasis on the discussion of variations of slope net radiation in typical stations and sites with slope direc- tion,slope,latitude and season.The distribution features of net radiation on the north and south slopes are, for the first time,mapped and discussed,revealing the great difference on the national basis,and thus acquiring a new interesting result that the negative-value area of winter net radiation on the north slope(20°)can reach Yunnan and Guizhou Provinces and middle and upper reaches of the Changjiang River.展开更多
<span style="white-space:normal;">Observing and studying the solar radiation during solar eclipses is important in knowing the changes that occur to the environmental elements during this event. The ma...<span style="white-space:normal;">Observing and studying the solar radiation during solar eclipses is important in knowing the changes that occur to the environmental elements during this event. The main objective of this paper is the performance of the incoming variation of solar radiation components, global, direct and diffuse and their fractions during the partial annular solar eclipse on June 21</span><sup style="white-space:normal;">st</sup><span style="white-space:normal;">, 2020 in Helwan, Egypt (Lat. 29.866</span>°<span style="white-space:normal;">N and Long. 31.20</span>°<span style="white-space:normal;">E) has been made. A pyrheliometer for measuring the direct solar radiation, in three different bands;direct yellow (</span><em style="white-space:normal;">Y</em><span style="white-space:normal;">), direct red (</span><em style="white-space:normal;">R</em><span style="white-space:normal;">), direct infrared (</span><em style="white-space:normal;">IR</em><span style="white-space:normal;">), and also the total direct band (</span><em style="white-space:normal;">I</em><span style="white-space:normal;">);A pyranometers for measuring the different components of global solar radiation (</span><em style="white-space:normal;">G</em><span style="white-space:normal;">), global ultraviolet (</span><em style="white-space:normal;">G<sub>UV</sub></em><span style="white-space:normal;">), global infrared (</span><em style="white-space:normal;">G<sub>IR</sub></em><span style="white-space:normal;">) and a meteorological station to measure the different meteorological parameters. The duration of the solar eclipse was 01 h:59 m, and the maximum magnitude of the eclipse in this region was 0.449. The depression is clear at the solar radiation of all components due to the annular solar eclipse, while the depressions of the diffuse and global infrared solar radiation are lower. In all direct radiation compounds (</span><em style="white-space:normal;">I</em><span style="white-space:normal;">, </span><em style="white-sp展开更多
Data on instantaneous atmospheric Linke turbidity factor TL (m) are reported for clear days at Qena/Egypt in the period from June 1992 to May 1993.TL(m) is determined using the values of irradiance of direct solar rad...Data on instantaneous atmospheric Linke turbidity factor TL (m) are reported for clear days at Qena/Egypt in the period from June 1992 to May 1993.TL(m) is determined using the values of irradiance of direct solar radiation (I),which are calculated from global (G) and diffuse (D) - solar radiation measurements.Monthly and seasonally variations of both diurnal and daily average values of TL (m) increases steadily in the direction of sunset in the months from June to December 1992 as well as Summer and Autumn seasons,while it falls generally in this direction for the months from January to March and Winter season.In April and May,TL (m) fluctuates obviously through the day hours,it is also shown that the average values of TL(m) are particularly large during Summer months compared to other months of the year.This behavior of TL(m) is discussed in view of the variations of some weather elements,which affect the content of water vapor and dust particle in the atmosphere of the study region.It seems t be of similar trends to that of other locations inside and outside Egypt.The virtual variation of TL(m) is eliminated by reducing its value to relative optical air mass m=2,according to Kasten formula.The resulting TL (2) is more representative for the content of dust particles and water vapor in the atmosphere.展开更多
基金supported by the National Natural Science Foundation of China,under the project entitled“The study of land-atmosphere water and heat flux interaction over the complex terrain of the north and south slopes of the Qomolangma region"[grant number 42230610]a Ministry of Science and Technology of China project called“Landatmosphere interaction and its climate effect of the Second Tibetan Plateau Scientific Expedition and Research Program"[grant number 2019QzKK0103]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[2022069].
文摘正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No.XDA05040201)the National Science and Technology Support Program of China (Grant No.2013CB430104)the Meteorology Project GYHY200906025
文摘A set of improved and efficient radiation parameterization schemes for surface radiation balance components under clear- sky conditions was developed by using general surface measurements and MODIS data. The set of schemes was then adapted for regions similar to the present study sites under different grazing intensities and varying degrees of drought in the semiarid grasslands of Inner Mongolia. Specifically, we mainly improved two schemes for estimating downward shortwave and longwave radiation at the surface, which could be applied to regions with certain degrees of drought. The validation datasets were from ground-based observations at various grazing sites during the growing season (May to September) of different drought years, 2005 and 2006. Through comparisons of parameterized versus measured radiation values, the increased or modified factors in the original schemes demonstrated improved estimation accuracy, and the rationalities of input parameters and variables were analyzed. The regional instantaneous net radiation estimations had root-mean-square errors of less than 30 W m-2 compared with ground measurements at the sites during the study period. The statistical results showed the improved schemes are suitable for estimating surface net radiation in regional semiarid areas during the growing season. Analyses of the sensitivity of the schemes to corresponding variables were conducted to ascertain the major error sources of the schemes and potential variables for improving the performance of the schemes in agreement with observations.
基金the State Meteorological Administration through the Meteorological Science Funds
文摘By using the climatological calculating method for each component of slope surface net radiation proposed by the authors,calculations and analyses are done of the distribution features of slope net radiation in China with emphasis on the discussion of variations of slope net radiation in typical stations and sites with slope direc- tion,slope,latitude and season.The distribution features of net radiation on the north and south slopes are, for the first time,mapped and discussed,revealing the great difference on the national basis,and thus acquiring a new interesting result that the negative-value area of winter net radiation on the north slope(20°)can reach Yunnan and Guizhou Provinces and middle and upper reaches of the Changjiang River.
文摘<span style="white-space:normal;">Observing and studying the solar radiation during solar eclipses is important in knowing the changes that occur to the environmental elements during this event. The main objective of this paper is the performance of the incoming variation of solar radiation components, global, direct and diffuse and their fractions during the partial annular solar eclipse on June 21</span><sup style="white-space:normal;">st</sup><span style="white-space:normal;">, 2020 in Helwan, Egypt (Lat. 29.866</span>°<span style="white-space:normal;">N and Long. 31.20</span>°<span style="white-space:normal;">E) has been made. A pyrheliometer for measuring the direct solar radiation, in three different bands;direct yellow (</span><em style="white-space:normal;">Y</em><span style="white-space:normal;">), direct red (</span><em style="white-space:normal;">R</em><span style="white-space:normal;">), direct infrared (</span><em style="white-space:normal;">IR</em><span style="white-space:normal;">), and also the total direct band (</span><em style="white-space:normal;">I</em><span style="white-space:normal;">);A pyranometers for measuring the different components of global solar radiation (</span><em style="white-space:normal;">G</em><span style="white-space:normal;">), global ultraviolet (</span><em style="white-space:normal;">G<sub>UV</sub></em><span style="white-space:normal;">), global infrared (</span><em style="white-space:normal;">G<sub>IR</sub></em><span style="white-space:normal;">) and a meteorological station to measure the different meteorological parameters. The duration of the solar eclipse was 01 h:59 m, and the maximum magnitude of the eclipse in this region was 0.449. The depression is clear at the solar radiation of all components due to the annular solar eclipse, while the depressions of the diffuse and global infrared solar radiation are lower. In all direct radiation compounds (</span><em style="white-space:normal;">I</em><span style="white-space:normal;">, </span><em style="white-sp
文摘Data on instantaneous atmospheric Linke turbidity factor TL (m) are reported for clear days at Qena/Egypt in the period from June 1992 to May 1993.TL(m) is determined using the values of irradiance of direct solar radiation (I),which are calculated from global (G) and diffuse (D) - solar radiation measurements.Monthly and seasonally variations of both diurnal and daily average values of TL (m) increases steadily in the direction of sunset in the months from June to December 1992 as well as Summer and Autumn seasons,while it falls generally in this direction for the months from January to March and Winter season.In April and May,TL (m) fluctuates obviously through the day hours,it is also shown that the average values of TL(m) are particularly large during Summer months compared to other months of the year.This behavior of TL(m) is discussed in view of the variations of some weather elements,which affect the content of water vapor and dust particle in the atmosphere of the study region.It seems t be of similar trends to that of other locations inside and outside Egypt.The virtual variation of TL(m) is eliminated by reducing its value to relative optical air mass m=2,according to Kasten formula.The resulting TL (2) is more representative for the content of dust particles and water vapor in the atmosphere.