木星拥有类似地球辐射带的辐射带结构,其辐射带质子通量是地球的10倍,高能电子通量比地球高2~3个数量级,且最高能量可达1 Ge V。因此木星探测任务的抗辐射设计是任务成功的关键。选择3种不同倾角大椭圆探测轨道,仿真分析了2种介质在变...木星拥有类似地球辐射带的辐射带结构,其辐射带质子通量是地球的10倍,高能电子通量比地球高2~3个数量级,且最高能量可达1 Ge V。因此木星探测任务的抗辐射设计是任务成功的关键。选择3种不同倾角大椭圆探测轨道,仿真分析了2种介质在变化能谱下的内带电过程。仿真结果表明,对于环氧树脂(Fr4),由于电阻相对较小,电子通量较大的近木点的充电电荷,会在远离辐射带时泄放,其最大充电电场取决于近木点的电子通量;对于聚酰亚胺(Kapton),由于电阻相对较大,充电电荷不能及时泄放,不同轨道间电荷逐渐累计,最大电场不断增加。另外,环木轨道倾角越大,越有利于降低充电电场。和地球GEO轨道相比,不同电阻介质在环木轨道的充电差异相对地球GEO轨道较小。展开更多
Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major...Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major challenges in space physics. This paper reviews the recent progress on the fast acceleration of "killer" electrons and energetic ions by ultralow frequency (ULF) waves stimulated by the interplanetary shock in the inner magnetosphere. Very low frequency (VLF) wave-particle interaction is considered to be one of the primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. Recently, using four Cluster spacecraft observations, we have found that, after interplanetary shocks impact the Earth’s magnetosphere, energetic electrons in the radiation belt are accelerated almost immediately and continue to accelerate for a few hours. The time scale (a few days) for traditional acceleration mechanisms, based on VLF wave-particle interactions to accelerate electrons to relativistic energies, is too long to explain our observations. Furthermore, we have found that interplanetary shocks or solar wind pressure pulses, with even small dynamic pressure changes, can play a non-negligible role in radiation belt dynamics. Interplanetary shocks interaction with the Earth’s magnetosphere manifests many fundamental space physics phenomena including energetic particle acceleration. The mechanism of fast acceleration of energetic electrons in the radiation belt responding to interplanetary shock impacts consists of three contributing parts: (1) the initial adiabatic acceleration due to strong shock-related magnetic field compression; (2) followed by the drift-resonant acceleration with poloidal ULF waves excited at different L-shells; and (3) particle acceleration due to the quickly damping electric fields associated with ULF waves. Particles end up with a net acceleration because they gain more energy in the first half of this cycle than they lose in the展开更多
With coordinated observations of the NOAA 15 satellite and OUL magnetometer station in Finland, we report that the elec- tromagnetic ion cyclotron (EMIC) waves which were stimulated by the compression of the magneto...With coordinated observations of the NOAA 15 satellite and OUL magnetometer station in Finland, we report that the elec- tromagnetic ion cyclotron (EMIC) waves which were stimulated by the compression of the magnetosphere drive relativistic electron precipitation in geoquiescence on 1 Jan 2007. After an enhancement of solar wind dynamic pressure (SWDP), a day- side Pcl pulsation was observed by the OUL station. Such a Pcl pulsation is caused by an EMIC wave which propagates from the generation source to lower altitudes. Simultaneously, the NOAA 15 satellite registered an enhancement of precipitating electron count rates with energies 〉3 MeV within the anisotropic zone of protons. This phenomenon is coincident with the quasi-linear theoretical calculation presented in this paper. Our observations suggest that after a positive impulse of solar wind, the compression-related EMIC waves can drive relativistic electrons precipitation and play a pivotal role in the dynamic of ra- diation belts.展开更多
Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric ...Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause.However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected electrons are shown to produce a new peak of linear growth rate in the exohiss band(< 0.1 f_(ce)). The corresponding path-integrated growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could amplify the preexisting exohiss waves.展开更多
地球磁场捕获带电粒子形成辐射带,地磁场的扰动将导致带电粒子通量的变化.根据磁暴期间外辐射带高能电子通量起伏和波动的特点及规律,利用GOES卫星实时发布的5 min分辨率高能电子微分通量数据,构建了高能电子通量波动指数,并分析了该指...地球磁场捕获带电粒子形成辐射带,地磁场的扰动将导致带电粒子通量的变化.根据磁暴期间外辐射带高能电子通量起伏和波动的特点及规律,利用GOES卫星实时发布的5 min分辨率高能电子微分通量数据,构建了高能电子通量波动指数,并分析了该指数与地磁活动的关系.结果表明,所提出的高能电子通量波动指数与地磁事件有很好的相关性,能起到地磁暴发生的指示剂作用,相对于目前空间环境业务化预报过程中广泛使用的3 h K_p指数,高能电子通量波动指数能更早地警报地磁暴的发生,是潜在有效的地磁暴警报辅助手段,能为空间环境预报中的地磁暴实时警报提供重要参考.展开更多
辐射带中高能电子与空间甚低频电磁波由于波粒共振相互作用发生投掷角散射,进而沉降入稠密大气而损失.为研究甚低频电磁波对辐射带中高能电子的散射作用机制,本文基于准线性扩散理论,利用库仑作用和波粒共振相互作用扩散系数的物理模型...辐射带中高能电子与空间甚低频电磁波由于波粒共振相互作用发生投掷角散射,进而沉降入稠密大气而损失.为研究甚低频电磁波对辐射带中高能电子的散射作用机制,本文基于准线性扩散理论,利用库仑作用和波粒共振相互作用扩散系数的物理模型,得到了两组典型甚低频电磁波与高能电子波粒共振相互作用的赤道投掷角弹跳周期平均扩散系数,并分析了甚低频电磁波共振散射作用与大气库仑散射作用对不同磁壳及不同能量的辐射带电子扩散损失的影响规律.以磁壳参数L=2.2,能量E=0.5 Me V的辐射带电子作为算例,采用有限差分方法数值求解扩散方程,计算分析了电子单向通量和全向通量随时间的沉降损失演化规律.研究结果表明:当电子能量大于0.5 Me V,磁壳参数大于1.6时,甚低频电磁波的共振散射作用显著;随着磁壳参数或电子能量的增大,斜传播甚低频电磁波引起的高阶共振相互作用越来越大;电子全向通量近似随时间呈指数函数形式衰减.展开更多
文摘木星拥有类似地球辐射带的辐射带结构,其辐射带质子通量是地球的10倍,高能电子通量比地球高2~3个数量级,且最高能量可达1 Ge V。因此木星探测任务的抗辐射设计是任务成功的关键。选择3种不同倾角大椭圆探测轨道,仿真分析了2种介质在变化能谱下的内带电过程。仿真结果表明,对于环氧树脂(Fr4),由于电阻相对较小,电子通量较大的近木点的充电电荷,会在远离辐射带时泄放,其最大充电电场取决于近木点的电子通量;对于聚酰亚胺(Kapton),由于电阻相对较大,充电电荷不能及时泄放,不同轨道间电荷逐渐累计,最大电场不断增加。另外,环木轨道倾角越大,越有利于降低充电电场。和地球GEO轨道相比,不同电阻介质在环木轨道的充电差异相对地球GEO轨道较小。
基金supported by the National Natural Science Foundation of China (40831061 and 41074117)the Specialized Research Fund for State Key Laboratories
文摘Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major challenges in space physics. This paper reviews the recent progress on the fast acceleration of "killer" electrons and energetic ions by ultralow frequency (ULF) waves stimulated by the interplanetary shock in the inner magnetosphere. Very low frequency (VLF) wave-particle interaction is considered to be one of the primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. Recently, using four Cluster spacecraft observations, we have found that, after interplanetary shocks impact the Earth’s magnetosphere, energetic electrons in the radiation belt are accelerated almost immediately and continue to accelerate for a few hours. The time scale (a few days) for traditional acceleration mechanisms, based on VLF wave-particle interactions to accelerate electrons to relativistic energies, is too long to explain our observations. Furthermore, we have found that interplanetary shocks or solar wind pressure pulses, with even small dynamic pressure changes, can play a non-negligible role in radiation belt dynamics. Interplanetary shocks interaction with the Earth’s magnetosphere manifests many fundamental space physics phenomena including energetic particle acceleration. The mechanism of fast acceleration of energetic electrons in the radiation belt responding to interplanetary shock impacts consists of three contributing parts: (1) the initial adiabatic acceleration due to strong shock-related magnetic field compression; (2) followed by the drift-resonant acceleration with poloidal ULF waves excited at different L-shells; and (3) particle acceleration due to the quickly damping electric fields associated with ULF waves. Particles end up with a net acceleration because they gain more energy in the first half of this cycle than they lose in the
基金supported by the National Natural Science Foundation of China(Grant Nos.41374168,41174140,41174147 and 41004060)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110141110043)the Fundamental Research Funds for the Central Universities of China(Grant No.2012212020204)
文摘With coordinated observations of the NOAA 15 satellite and OUL magnetometer station in Finland, we report that the elec- tromagnetic ion cyclotron (EMIC) waves which were stimulated by the compression of the magnetosphere drive relativistic electron precipitation in geoquiescence on 1 Jan 2007. After an enhancement of solar wind dynamic pressure (SWDP), a day- side Pcl pulsation was observed by the OUL station. Such a Pcl pulsation is caused by an EMIC wave which propagates from the generation source to lower altitudes. Simultaneously, the NOAA 15 satellite registered an enhancement of precipitating electron count rates with energies 〉3 MeV within the anisotropic zone of protons. This phenomenon is coincident with the quasi-linear theoretical calculation presented in this paper. Our observations suggest that after a positive impulse of solar wind, the compression-related EMIC waves can drive relativistic electrons precipitation and play a pivotal role in the dynamic of ra- diation belts.
基金supported by National Natural Science Foundation of China grants 41631071, 41774170, 41274174, 41174125, 41131065, 41421063, 41231066 and 41304134Chinese Academy of Sciences grants KZCX2-EW-QN510 and KZZD-EW-01-4+2 种基金CAS Key Research Program of Frontier Sciences grant QYZDB-SSWDQC015National Key Basic Research Special Foundation of China Grant No. 2011CB811403Fundamental Research Funds for the Central Universities WK2080000077
文摘Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause.However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected electrons are shown to produce a new peak of linear growth rate in the exohiss band(< 0.1 f_(ce)). The corresponding path-integrated growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could amplify the preexisting exohiss waves.
文摘地球磁场捕获带电粒子形成辐射带,地磁场的扰动将导致带电粒子通量的变化.根据磁暴期间外辐射带高能电子通量起伏和波动的特点及规律,利用GOES卫星实时发布的5 min分辨率高能电子微分通量数据,构建了高能电子通量波动指数,并分析了该指数与地磁活动的关系.结果表明,所提出的高能电子通量波动指数与地磁事件有很好的相关性,能起到地磁暴发生的指示剂作用,相对于目前空间环境业务化预报过程中广泛使用的3 h K_p指数,高能电子通量波动指数能更早地警报地磁暴的发生,是潜在有效的地磁暴警报辅助手段,能为空间环境预报中的地磁暴实时警报提供重要参考.
文摘辐射带中高能电子与空间甚低频电磁波由于波粒共振相互作用发生投掷角散射,进而沉降入稠密大气而损失.为研究甚低频电磁波对辐射带中高能电子的散射作用机制,本文基于准线性扩散理论,利用库仑作用和波粒共振相互作用扩散系数的物理模型,得到了两组典型甚低频电磁波与高能电子波粒共振相互作用的赤道投掷角弹跳周期平均扩散系数,并分析了甚低频电磁波共振散射作用与大气库仑散射作用对不同磁壳及不同能量的辐射带电子扩散损失的影响规律.以磁壳参数L=2.2,能量E=0.5 Me V的辐射带电子作为算例,采用有限差分方法数值求解扩散方程,计算分析了电子单向通量和全向通量随时间的沉降损失演化规律.研究结果表明:当电子能量大于0.5 Me V,磁壳参数大于1.6时,甚低频电磁波的共振散射作用显著;随着磁壳参数或电子能量的增大,斜传播甚低频电磁波引起的高阶共振相互作用越来越大;电子全向通量近似随时间呈指数函数形式衰减.