期刊文献+

带电粒子在辐射带中的运动轨迹模拟 被引量:3

Simulation of motion trajectory of charged particles in the radiation belt
原文传递
导出
摘要 根据辐射带捕获粒子的基本理论和带电粒子与大气相互作用的机理,建立了带电粒子在地磁场和大气作用下运动径迹模拟方法。带电粒子在地磁场作用下的运动方程采取随时间"推进"的二阶精度中心有限差分格式求解。带电粒子与大气发生库仑碰撞引起的方向偏转依据其散射概率分布应用蒙特卡罗方法抽样确定,每一步的能量损失由单位长度上的能量损失方程计算得到。利用该方法对不同条件下带电粒子注入辐射带后的运动行为进行了模拟计算,得到的特征参数与解析分析结果相符。 Based on the theory of radiation belt and mechanism of charged particles interacting with the atmosphere, we developed computational techniques to model trajectories of radiation belt tapped charged particles. A center-differential second-order accurate format for pushing particles was applied to solve the motion equation of charged particles in the geomagnetic field. According to the scattering probability distribution of charged particles acted by atmospheric Coulombic collisions, the angular deflection due to atmospheric scattering in each step was sampled by Monte Carlo simulation. Energy loss in a step was determined by the equation for energy loss per length. Using the computational techniques, we simulated motion trajectories of trapped charged particles with some initial conditions.
出处 《核技术》 CAS CSCD 北大核心 2011年第5期345-349,共5页 Nuclear Techniques
关键词 辐射带 带电粒子 运动径迹 有限差分方法 蒙特卡罗方法 Radiation belt, Charged particle, Motion trajectory, Finite difference arithmetic, Monte Carlo method
  • 相关文献

参考文献12

  • 1Mcilwain C E. The radiation belts, natural and artificial. Science, 1963, 142:355-360. 被引量:1
  • 2王建国,牛胜利,张殿辉,等.高空核爆炸效应参数手册.北京:原子能出版,2010. 被引量:2
  • 3Dupont D G. Nuclear explosions in orbit. Scientific American, 2004, 290(6): 100-107. 被引量:1
  • 4Roederer J G. Dynamics of geomagnetically trapped radiation. Heidelberg: Springer-Verlad Berlin, 1970. 被引量:1
  • 5McIlwain C E. Coordinates for mapping the distribution of magnetically trapped particles. J Geophys Res, 1961,66(3): 3681-3691. 被引量:1
  • 6Martint W. The effects of atmospheric collision on geomagnetically trapped electrons. J Geophys Res, 1964, 68(3): 3947-3958. 被引量:1
  • 7Martint W. Introduction to geomagnetically trapped radiation. Cambridge University, 1994. 被引量:1
  • 8Hamlin D A, Karplus R. Mirror and azimuthal drift frequencies for geomagnetically trapped particles. J Geophys Res, 1966, 66(1): 2715-1720. 被引量:1
  • 9Birdsall C K, Langdon A B. Plasma Physics via Computer Simulation. New York: McGraw-Hill, 1985. 被引量:1
  • 10Jackson John David. Classical Electrodynamics. 3rd ed. New Jersey: John Wiley and Sons, Inc., 1998. 被引量:1

共引文献1

同被引文献21

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部