在全面讨论了以Matlab为软件平台实时仿真方法的基础上,提出了双机RTWT(Real-Time Windows Target)模式的实时仿真系统构架,设计了双目视觉两轮机器人实时目标跟踪系统.相比于传统RTWT模式,该构架大幅度地提高了实时仿真系统的数据处理...在全面讨论了以Matlab为软件平台实时仿真方法的基础上,提出了双机RTWT(Real-Time Windows Target)模式的实时仿真系统构架,设计了双目视觉两轮机器人实时目标跟踪系统.相比于传统RTWT模式,该构架大幅度地提高了实时仿真系统的数据处理能力,拓宽了硬件的适用范围.在实时系统测试前,对所使用的位置角度同步、异步控制器及同步补偿算法对目标捕捉性能的影响进行了全仿真研究,仿真结果表明:采用同步控制策略捕捉时间较短,而采用异步控制策略运行轨迹较短,两者各具优势;当扰动不是很大时,同步补偿算法对同步控制的影响较大,能有效缩短捕捉时间和运行轨迹,而对异步控制的影响较小.展开更多
A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relativistic electron beam with the entire system immersed in a strong...A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relativistic electron beam with the entire system immersed in a strong longitudinal magnetic field. By means of the linear field theory, the dispersion relation for the relativistic travelling wave tube (RTWT) is derived. By numerical computation, the dispersion characteristics of the RTWT are analysed in different cases of various geometric parameters of the slow wave structure and plasma densities. Also the gain versus frequency for three different plasma densities and the peak gain of the tube versus plasma density are analysed. Some useful results are obtained on the basis of the discussion.展开更多
文摘在全面讨论了以Matlab为软件平台实时仿真方法的基础上,提出了双机RTWT(Real-Time Windows Target)模式的实时仿真系统构架,设计了双目视觉两轮机器人实时目标跟踪系统.相比于传统RTWT模式,该构架大幅度地提高了实时仿真系统的数据处理能力,拓宽了硬件的适用范围.在实时系统测试前,对所使用的位置角度同步、异步控制器及同步补偿算法对目标捕捉性能的影响进行了全仿真研究,仿真结果表明:采用同步控制策略捕捉时间较短,而采用异步控制策略运行轨迹较短,两者各具优势;当扰动不是很大时,同步补偿算法对同步控制的影响较大,能有效缩短捕捉时间和运行轨迹,而对异步控制的影响较小.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347009) and Science Foundation of Education Bureau of Sichuan Province, China (Grand No 2003B019).
文摘A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relativistic electron beam with the entire system immersed in a strong longitudinal magnetic field. By means of the linear field theory, the dispersion relation for the relativistic travelling wave tube (RTWT) is derived. By numerical computation, the dispersion characteristics of the RTWT are analysed in different cases of various geometric parameters of the slow wave structure and plasma densities. Also the gain versus frequency for three different plasma densities and the peak gain of the tube versus plasma density are analysed. Some useful results are obtained on the basis of the discussion.