受限制的玻尔兹曼机(RBM)是一种无向图模型.基于RBM的深度学习模型包括深度置信网(DBN)和深度玻尔兹曼机(DBM)等.在神经网络和RBM的训练过程中,过拟合问题是一个比较常见的问题.针对神经网络的训练,权值随机变量(weight random variabl...受限制的玻尔兹曼机(RBM)是一种无向图模型.基于RBM的深度学习模型包括深度置信网(DBN)和深度玻尔兹曼机(DBM)等.在神经网络和RBM的训练过程中,过拟合问题是一个比较常见的问题.针对神经网络的训练,权值随机变量(weight random variables)、Dropout方法和早期停止方法已被用于缓解过拟合问题.首先,改变RBM模型中的训练参数,使用随机变量代替传统的实值变量,构建了基于随机权值的受限的波尔兹曼机(weight uncertainty RBM,简称WRBM),接下来,在WRBM基础上构建了相应的深度模型:Weight uncertainty Deep Belief Network(WDBN)和Weight uncertainty Deep Boltzmann Machine(WDBM),并且通过实验验证了WDBN和WDBM的有效性.最后,为了更好地建模输入图像,引入基于条件高斯分布的RBM模型,构建了基于spike-and-slab RBM(ssRBM)的深度模型,并通过实验验证了模型的有效性.展开更多
文摘受限制的玻尔兹曼机(RBM)是一种无向图模型.基于RBM的深度学习模型包括深度置信网(DBN)和深度玻尔兹曼机(DBM)等.在神经网络和RBM的训练过程中,过拟合问题是一个比较常见的问题.针对神经网络的训练,权值随机变量(weight random variables)、Dropout方法和早期停止方法已被用于缓解过拟合问题.首先,改变RBM模型中的训练参数,使用随机变量代替传统的实值变量,构建了基于随机权值的受限的波尔兹曼机(weight uncertainty RBM,简称WRBM),接下来,在WRBM基础上构建了相应的深度模型:Weight uncertainty Deep Belief Network(WDBN)和Weight uncertainty Deep Boltzmann Machine(WDBM),并且通过实验验证了WDBN和WDBM的有效性.最后,为了更好地建模输入图像,引入基于条件高斯分布的RBM模型,构建了基于spike-and-slab RBM(ssRBM)的深度模型,并通过实验验证了模型的有效性.