The two-dimensional Rayleigh-Taylor instability problem is simulated with a multiple-relaxation-time discrete Boltzmann model with a gravity term. Viscosity, heat conductivity, and Prandtl number effects are probed fr...The two-dimensional Rayleigh-Taylor instability problem is simulated with a multiple-relaxation-time discrete Boltzmann model with a gravity term. Viscosity, heat conductivity, and Prandtl number effects are probed from macroscopic and nonequilibrium viewpoints. In the macro sense, both viscosity and heat conduction show a significant inhibitory effect in the reacceleration stage, which is mainly achieved by inhibiting the development of the Kelvin-Helmholtz instability. Before this, the Prandtl number effect is not sensitive. Viscosity, heat conductivity, and Prandtl number effects on nonequilibrium manifestations and the degree of correlation between the nonuniformity and the nonequilibrium strength in the complex flow are systematically investigated.展开更多
Evolution of a two-dimensional air/SF6 single-mode interface is numerically investigated by an upwind CE/SE method under a cylindrically converging circumstance. The Rayleigh-Taylor effect caused by the flow decelerat...Evolution of a two-dimensional air/SF6 single-mode interface is numerically investigated by an upwind CE/SE method under a cylindrically converging circumstance. The Rayleigh-Taylor effect caused by the flow deceleration on the phase inversion(RTPI)is highlighted. The RTPI was firstly observed in our previous experiment, but the related mechanism remains unclear. By isolating the three-dimensional effect, it is found here that the initial amplitude(a0), the azimuthal mode number(k0) and the re-shocking moment are the three major parameters which determine the RTPI occurrence. In the variable space of(k0, a0), a critical a0 for the RTPI occurrence is solved for each k0, and there exists a threshold value of k0 below which the RTPI will not occur no matter what a0 is. There exists a special k0 corresponding to the largest critical a0, and the reduction rule of critical a0 with k0 can be well described by an exponential decay function. The results show that the occurrence of the RTPI requires a small a0 which should be less than a critical value, a large k0 which should exceed a threshold, and a right impinging moment of the re-shock which should be later than the RTPI occurrence. Finally, the effects of the incident shock strength, the density ratio and the initial position of the interface on the threshold value of k0 and on the maximum critical a0 are examined. These new findings would facilitate the understanding of the converging Richtmyer-Meshkov instability and would be helpful for designing an optimal structure of the inertia confinement fusion capsule.展开更多
In this review paper on heavy ion inertial fusion(HIF),the state-of-the-art scientific results are presented and discussed on the HIF physics,including physics of the heavy ion beam(HIB)transport in a fusion reactor,t...In this review paper on heavy ion inertial fusion(HIF),the state-of-the-art scientific results are presented and discussed on the HIF physics,including physics of the heavy ion beam(HIB)transport in a fusion reactor,the HIBs-ion illumination on a direct-drive fuel target,the fuel target physics,the uniformity of the HIF target implosion,the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion.The HIB has remarkable preferable features to release the fusion energy in inertial fusion:in particle accelerators HIBs are generated with a high driver efficiency of~30%-40%,and the HIB ions deposit their energy inside of materials.Therefore,a requirement for the fusion target energy gain is relatively low,that would be~50-70 to operate a HIF fusion reactor with the standard energy output of 1 GWof electricity.The HIF reactor operation frequency would be~10-15 Hz or so.Several-MJ HIBs illuminate a fusion fuel target,and the fuel target is imploded to about a thousand times of the solid density.Then the DT fuel is ignited and burned.The HIB ion deposition range is defined by the HIB ions stopping length,which would be~1 mm or so depending on the material.Therefore,a relatively large density-scale length appears in the fuel target material.One of the critical issues in inertial fusion would be a spherically uniform target compression,which would be degraded by a non-uniform implosion.The implosion non-uniformity would be introduced by the Rayleigh-Taylor(R-T)instability,and the large densitygradient-scale length helps to reduce the R-T growth rate.On the other hand,the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature:normally about 300 eV or so is realized in the energy absorption region,and that a direct-drive target would be appropriate in HIF.In addition,the HIB accelerators are operated repetitively and stably.The precise control of the HIB axis manipulation is also r展开更多
Relatively large measurement uncertainty severely hindered wide application for laser-induced breakdown spectroscopy(LIBS),therefore it is of great importance to understand the mechanism of signal uncertainty generati...Relatively large measurement uncertainty severely hindered wide application for laser-induced breakdown spectroscopy(LIBS),therefore it is of great importance to understand the mechanism of signal uncertainty generation,including initiation and propagation.It has been found that the Auctuation of plasma morphology was the main reason for signal uncertainty.However,it still remains unclear what mechanism leads to laser-induced plasma morphology fluctuation.In the present work,we employed three fast-imaging cameras to capture three successive plasma images fromn a same laser-induced Titanium alloy plasma,which enables us to understand more clearly of the plasma evolution process especially for the early plasma evolution stage when plasma and surrounding gases interact drastically.Seen from the images,the plasma experienced an increasing morphological fuctuation as delay time increased,transforming from a“stable plasma”before the delay time of 100 ns to a“fuctuating plasma”after the delay time of 300 ns.Notably,the frontier part of plasma showed a significant down-ward motion from the delay time of 150 ns to 200 ns and crashed with the lower part of the plasma,making the plasma fatter and later even splitting the plasma into two parts,which was considered as a critical process for the transformation of“stable plasma”to“unstable plasma”.By calculating the correlation coefficient of plasma image pairs at successive delay times,it was found that the higher the similarity between two plasma at early stage,the more similar at later stage;this implied that the tiny plasma fuctuation earlier than the critical delay time(150-200 ns)was amplifed,causing a large plasma fluctuation at the later stage as well as LIBS measurement uncertainty.The initation of slight fluctuation was linked with Rayleigh-Taylor Instability(RTI)due to the drastic material interpenetration at the plasma-ambient gas interface at earlier stage(before 50 ns).That is,the uncertainty generation of LIBS was proposed as:plasma morphology flu展开更多
瑞利-泰勒(RT)湍流混合阶段的气泡统计直径d和高度h随时间的演化规律对许多自然现象和工程应用都至关重要.对于由多模短波扰动演化而来的RT问题,大量数值模拟和最新实验(R.V.Morgan et al.,2020)均表明,气泡统计直径d和高度h具有普适性...瑞利-泰勒(RT)湍流混合阶段的气泡统计直径d和高度h随时间的演化规律对许多自然现象和工程应用都至关重要.对于由多模短波扰动演化而来的RT问题,大量数值模拟和最新实验(R.V.Morgan et al.,2020)均表明,气泡统计直径d和高度h具有普适性的增长规律.但是,到目前为止,先前研究者仍然没有给出能够同时准确预测这两个特征量的自洽模型.在本文中,基于半约束思想和浮阻力模型,我们建立了一个能够同时适用于二维(2D)及三维(3D)流动的统一气泡融合模型.新模型表明:(1)气泡平均直径d呈自相似增长,相应的自相似结构参数β≡d/h≈(1+A)/2和(1+A)/4,其中阿特伍德数A是密度比的函数;(2)气泡高度h与时间呈二次增长关系,其中二次增长系数α≡h/(Agt^(2))≈0.05(2D)和0.025(3D),其中g为加速度,t为时间.结果表明,新模型的预测结果与先前的实验和数值模拟结果一致,对理解RT湍流混合具有重要意义.展开更多
Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abund...Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abundant results of RT instability have been obtained by traditional macroscopic methods.However,research on the thermodynamic non-equilibrium(TNE)effects in the process of system evolution is relatively scarce.In this paper,the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability.The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region.Firstly,as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region,the average TNE intensity first increases and then reduces,and it increases with the specific heat ratio decreasing;the specific heat ratio has the same effect on the global strength of the viscous stress tensor.Secondly,the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure.Thirdly,under the competition between the temperature gradients and the contact area of the two fluids,the average intensity of the non-equilibrium quantity related to the heat flux shows diversity,and the influence of the specific heat ratio is also quite remarkable.展开更多
When it is generated in extreme vicinity to a water surface,an oscillating bubble bursts into the atmosphere and high-pressure gas is simultaneously exhausted from it,forming a splash sheet and an open cavity.The dyna...When it is generated in extreme vicinity to a water surface,an oscillating bubble bursts into the atmosphere and high-pressure gas is simultaneously exhausted from it,forming a splash sheet and an open cavity.The dynamics of the splash sheet induced by the bursting of the oscillating bubble has drawn increasing attention,but it is not clearly understood.We conduct a numerical simulation in the framework of open-source software OpenFOAM.The volume of fluid and Reynolds-Averaged Navier-Stokes methods are used to precisely capture the gas-liquid interface and obtain flow structure,respectively.In addition,an experimental setup is carried out based on an object distance compensation method for validation of the numerical model.Two patterns are summarized:(1)An open splash,(2)A sealed splash depending on whether a splash sheet completely closes.Detailed numerical results shows that the bubble bursting is induced by the Rayleigh-Taylor instability.Finally,the splash closures are discussed for two patterns.展开更多
Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic...Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, severa展开更多
The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor rad...The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor radius magnetohydrodynamic (MHD) equations. The finite Larmor radius effects are introduced in the momentum equation with the sheared axial flow through an anisotropic ion stress tensor. In this paper a linear mode equation is derived that is valid for arbitrary kL, where k is the wave number and L is the plasma shell thickness. Numerical solutions are presented. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the individual effect of the finite Larmor radius or the sheared axial flow. The assembling effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability, and the unstable region can be compressed considerably.展开更多
A laboratory study of the turbulence front initiated by the Rayleigh-Taylor instabilities was conducted by overturning a two-layer stratified flow in a tank. Dye was introduced to the upper layer and the concentration...A laboratory study of the turbulence front initiated by the Rayleigh-Taylor instabilities was conducted by overturning a two-layer stratified flow in a tank. Dye was introduced to the upper layer and the concentration of the dye was determined using a video imaging method. The mass center of the heavier upper layer moved continuously to a lower elevation because of the intrusion of the heavier fluid into the lower layer and the lighter fluid into the upper layer. The downward movement of the mass center was accurately determined from the dye concentration profile. It is concluded that the initial advancement of the mass center follows a quadratic relation with time and the final advancement obeys a linear relation with time.展开更多
Directly driven ablative Rayleigh Taylor (R-T) instability of modulated CH targets was studied using the face- on X-ray radiography on the Shen-Guang II device. We obtained temporal evolution images of the R-T insta...Directly driven ablative Rayleigh Taylor (R-T) instability of modulated CH targets was studied using the face- on X-ray radiography on the Shen-Guang II device. We obtained temporal evolution images of the R-T instability perturbation. The RT instability growth factor has been obtained by using the methods of fast Fourier transform and seeking the difference of light intensity between the peak and the valley of the targets. Through comparison with the the theoretical simulation, we found that the experimental data had a good agreement with the theoretical simulation results before 1.8 ns. and was lower than the theoretical simulation results after that.展开更多
The linear analysis of the Rayleigh-Taylor instability in metal material is extended from the perfect plastic constitutive model to the Johnson-Cook and Steinberg-Guinan constitutive model, and from the constant loadi...The linear analysis of the Rayleigh-Taylor instability in metal material is extended from the perfect plastic constitutive model to the Johnson-Cook and Steinberg-Guinan constitutive model, and from the constant loading to a time-dependent loading. The analysis is applied to two Rayleigh-Taylor instability experiments in aluminum and vanadium with peak pressures of 20 GPa and 90 GPa, and strain rates of 6 × 106 s−1 and 3 × 107 s−1 respectively. When the time-dependent loading and the Steinberg-Guinan constitutive model are used in the linear analysis, the analytic results are in close agreement with experiments quantitatively, which indicates that the method in this paper is applicable to the Rayleigh-Taylor instability in aluminum and vanadium metal materials under high pressure and high strain rate. From these linear analyses, we find that the constitutive models and the loading process are of crucial importance in the linear analysis of the Rayleigh-Taylor instability in metal material, and a better understanding of the Rayleigh-Taylor instability in metals is gained. These results will serve as important references for evolving high-pressure, high-strain-rate experiments and numerical simulations.展开更多
Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the pr...Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the present paper, the sufficient conditions of R-T stability and instability are preliminarily^derived. Linear equations for small perturbation are first obtained from the electron/ion continuity equations, momentum equations, and the current continuity equation in the equatorial ionosphere. The linear equations can be casted as an eigenvalue equation using a normal mode method. The eigenvalue equation is a variable coefficient linear equation that can be solved using a variational approach. With this approach, the sufficient conditions can be obtained as follows: if the minimum systematic eigenvalue is greater than one, the ionosphere is R-T unstable; while if the maximum systematic eigenvalue is less than one, the ionosphere is R-T stable. An approximate numerical method for obtaining the systematic eigenvalues is introduced, and the R-T stable/unstable areas are calculated. Numerical experiments axe designed to validate the sufficient conditions. The results agree with the derived suf- ficient conditions.展开更多
A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch imp...A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.展开更多
The temporal development of a single mode Rayleigh-Taylor instability consists of three stages: the linear, free fall and terminal velocity regimes. The purpose of this paper is to report on new phenomena observed in ...The temporal development of a single mode Rayleigh-Taylor instability consists of three stages: the linear, free fall and terminal velocity regimes. The purpose of this paper is to report on new phenomena observed in the approach to terminal velocity. Our numerical study shows an unexpected nonuniform approach to terminal velocity. The nonuniformity applies especially to the spikes, which are fingers of heavy fluid falling into the light fluid, but it also applies to the rising bubbles of light fluid. For spikes especially, our results call into question the meaningfulness of a terminal velocity for moderate values of the Atwood number A. After a short time period of pseudo-terminal plateau, the spike velocity increases to a significantly higher maximum, followed by a decrease. This phenomena appears to be due to a slow evolution in the shape of the spike and bubble. We find a relation between the spike (bubble) acceleration and the tip curvature. In correlation with an increase in the spike velocity, the main body of the spike becomes narrower and the tip curvature increases. Our numerical results are by the Front Tracking method. The very late time simulations considered here required stabilization by a small value for the viscosity, so that the compressible Navier-Stokes equations govern the dynamics.展开更多
Studying the dynamical behaviors of the liquid spike formed by Rayleigh-Taylor instability is important to understand the mechanisms of liquid atomization process. In this paper, based on the information on the veloci...Studying the dynamical behaviors of the liquid spike formed by Rayleigh-Taylor instability is important to understand the mechanisms of liquid atomization process. In this paper, based on the information on the velocity and pressure fields obtained by the coupled-level-set and volume-of- fluid (CLSVOF) method, we describe how a freed spike can be formed from a liquid layer under falling at a large Atwood number. At the initial stage when the surface deformation is small, the amplitude of the surface deformation increases exponentially. Nonlinear effect becomes dominant when the amplitude of the surface deformation is comparable with the surface wavelength (~0.1λ). The maximum pressure point, which results from the impinging flow at the spike base, is essential to generate a liquid spike. The spike region above the maximum pressure point is dynamically free from the bulk liquid layer below that point. As the descending of the maximum pressure point, the liquid elements enter the freed region and elongate the liquid spike to a finger-like shape.展开更多
A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fu...A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of - 30 ps at the Shen Guang-Ⅲ (SG-Ⅲ) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion.展开更多
The 3-dimensional incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation ( LES) approach based on the passive scalar transport model. Both the instantaneous velocity and th...The 3-dimensional incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation ( LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinusoidal perturbation and random perturbation are simulated. A full treatment of the whole evolution process of the instability is addressed. To verify the reliability of the LES code, the averaged turbulent energy as well as the flux of passive scalar are calculated at both the resolved scale and the subgrid scale. Our results show good agreement with the experimental and other numerical work. The LES method has proved to be an effective approach to the Rayleigh-Taylor instability.展开更多
In this paper, we introduce a multi-material arbitrary Lagrangian and Eulerian method for the hydrodynamic radiative multi-group diffusion model in 2D cylindrical coordinates. The basic idea in the construction of the...In this paper, we introduce a multi-material arbitrary Lagrangian and Eulerian method for the hydrodynamic radiative multi-group diffusion model in 2D cylindrical coordinates. The basic idea in the construction of the method is the following: In the Lagrangian step, a closure model of radiation-hydrodynamics is used to give the states of equations for materials in mixed cells. In the mesh rezoning step, we couple the rezoning principle with the Lagrangian interface tracking method and an Eulerian interface capturing scheme to compute interfaces sharply according to their deformation and to keep cells in good geometric quality. In the interface reconstruction step, a dual-material Moment-of-Fluid method is introduced to obtain the unique interface in mixed ceils. In the remapping step, a conservative remapping algorithm of conserved quantities is presented. A munber of numerical tests are carried out and the numerical results show that the new method can simulate instabilities in complex fluid field under large deformation, and are accurate and robust.展开更多
文摘The two-dimensional Rayleigh-Taylor instability problem is simulated with a multiple-relaxation-time discrete Boltzmann model with a gravity term. Viscosity, heat conductivity, and Prandtl number effects are probed from macroscopic and nonequilibrium viewpoints. In the macro sense, both viscosity and heat conduction show a significant inhibitory effect in the reacceleration stage, which is mainly achieved by inhibiting the development of the Kelvin-Helmholtz instability. Before this, the Prandtl number effect is not sensitive. Viscosity, heat conductivity, and Prandtl number effects on nonequilibrium manifestations and the degree of correlation between the nonuniformity and the nonequilibrium strength in the complex flow are systematically investigated.
基金supported by the National Natural Science Foundation of China(Grant Nos.11772329,11802304,and U1530103)the Science Challenge Project(Grant No.TZ2016001)the Research Grants Council,Hong Kong(Grant No.152151/16E)
文摘Evolution of a two-dimensional air/SF6 single-mode interface is numerically investigated by an upwind CE/SE method under a cylindrically converging circumstance. The Rayleigh-Taylor effect caused by the flow deceleration on the phase inversion(RTPI)is highlighted. The RTPI was firstly observed in our previous experiment, but the related mechanism remains unclear. By isolating the three-dimensional effect, it is found here that the initial amplitude(a0), the azimuthal mode number(k0) and the re-shocking moment are the three major parameters which determine the RTPI occurrence. In the variable space of(k0, a0), a critical a0 for the RTPI occurrence is solved for each k0, and there exists a threshold value of k0 below which the RTPI will not occur no matter what a0 is. There exists a special k0 corresponding to the largest critical a0, and the reduction rule of critical a0 with k0 can be well described by an exponential decay function. The results show that the occurrence of the RTPI requires a small a0 which should be less than a critical value, a large k0 which should exceed a threshold, and a right impinging moment of the re-shock which should be later than the RTPI occurrence. Finally, the effects of the incident shock strength, the density ratio and the initial position of the interface on the threshold value of k0 and on the maximum critical a0 are examined. These new findings would facilitate the understanding of the converging Richtmyer-Meshkov instability and would be helpful for designing an optimal structure of the inertia confinement fusion capsule.
基金supported by JSPS,MEXT,CORE(Center for Optical Research and Education,Utsunomiya University),ASHULA,ILE/Osaka University,and CDI(Cre-ative Department for Innovation,Utsunomiya University).
文摘In this review paper on heavy ion inertial fusion(HIF),the state-of-the-art scientific results are presented and discussed on the HIF physics,including physics of the heavy ion beam(HIB)transport in a fusion reactor,the HIBs-ion illumination on a direct-drive fuel target,the fuel target physics,the uniformity of the HIF target implosion,the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion.The HIB has remarkable preferable features to release the fusion energy in inertial fusion:in particle accelerators HIBs are generated with a high driver efficiency of~30%-40%,and the HIB ions deposit their energy inside of materials.Therefore,a requirement for the fusion target energy gain is relatively low,that would be~50-70 to operate a HIF fusion reactor with the standard energy output of 1 GWof electricity.The HIF reactor operation frequency would be~10-15 Hz or so.Several-MJ HIBs illuminate a fusion fuel target,and the fuel target is imploded to about a thousand times of the solid density.Then the DT fuel is ignited and burned.The HIB ion deposition range is defined by the HIB ions stopping length,which would be~1 mm or so depending on the material.Therefore,a relatively large density-scale length appears in the fuel target material.One of the critical issues in inertial fusion would be a spherically uniform target compression,which would be degraded by a non-uniform implosion.The implosion non-uniformity would be introduced by the Rayleigh-Taylor(R-T)instability,and the large densitygradient-scale length helps to reduce the R-T growth rate.On the other hand,the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature:normally about 300 eV or so is realized in the energy absorption region,and that a direct-drive target would be appropriate in HIF.In addition,the HIB accelerators are operated repetitively and stably.The precise control of the HIB axis manipulation is also r
基金The autor thank the financial support from the National Natural Science,Foundation of China(No.61675110)the National Key Research and Development Program Key Projects of China(No.2016YFC0302102).
文摘Relatively large measurement uncertainty severely hindered wide application for laser-induced breakdown spectroscopy(LIBS),therefore it is of great importance to understand the mechanism of signal uncertainty generation,including initiation and propagation.It has been found that the Auctuation of plasma morphology was the main reason for signal uncertainty.However,it still remains unclear what mechanism leads to laser-induced plasma morphology fluctuation.In the present work,we employed three fast-imaging cameras to capture three successive plasma images fromn a same laser-induced Titanium alloy plasma,which enables us to understand more clearly of the plasma evolution process especially for the early plasma evolution stage when plasma and surrounding gases interact drastically.Seen from the images,the plasma experienced an increasing morphological fuctuation as delay time increased,transforming from a“stable plasma”before the delay time of 100 ns to a“fuctuating plasma”after the delay time of 300 ns.Notably,the frontier part of plasma showed a significant down-ward motion from the delay time of 150 ns to 200 ns and crashed with the lower part of the plasma,making the plasma fatter and later even splitting the plasma into two parts,which was considered as a critical process for the transformation of“stable plasma”to“unstable plasma”.By calculating the correlation coefficient of plasma image pairs at successive delay times,it was found that the higher the similarity between two plasma at early stage,the more similar at later stage;this implied that the tiny plasma fuctuation earlier than the critical delay time(150-200 ns)was amplifed,causing a large plasma fluctuation at the later stage as well as LIBS measurement uncertainty.The initation of slight fluctuation was linked with Rayleigh-Taylor Instability(RTI)due to the drastic material interpenetration at the plasma-ambient gas interface at earlier stage(before 50 ns).That is,the uncertainty generation of LIBS was proposed as:plasma morphology flu
基金supported by the National Natural Science Foundation of China(Grant Nos.12222203,11972093 and 91852207).
文摘瑞利-泰勒(RT)湍流混合阶段的气泡统计直径d和高度h随时间的演化规律对许多自然现象和工程应用都至关重要.对于由多模短波扰动演化而来的RT问题,大量数值模拟和最新实验(R.V.Morgan et al.,2020)均表明,气泡统计直径d和高度h具有普适性的增长规律.但是,到目前为止,先前研究者仍然没有给出能够同时准确预测这两个特征量的自洽模型.在本文中,基于半约束思想和浮阻力模型,我们建立了一个能够同时适用于二维(2D)及三维(3D)流动的统一气泡融合模型.新模型表明:(1)气泡平均直径d呈自相似增长,相应的自相似结构参数β≡d/h≈(1+A)/2和(1+A)/4,其中阿特伍德数A是密度比的函数;(2)气泡高度h与时间呈二次增长关系,其中二次增长系数α≡h/(Agt^(2))≈0.05(2D)和0.025(3D),其中g为加速度,t为时间.结果表明,新模型的预测结果与先前的实验和数值模拟结果一致,对理解RT湍流混合具有重要意义.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51806116 and 11875001)the Natural Science Foundation of Fujian Province(Grant No.2018J01654).
文摘Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abundant results of RT instability have been obtained by traditional macroscopic methods.However,research on the thermodynamic non-equilibrium(TNE)effects in the process of system evolution is relatively scarce.In this paper,the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability.The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region.Firstly,as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region,the average TNE intensity first increases and then reduces,and it increases with the specific heat ratio decreasing;the specific heat ratio has the same effect on the global strength of the viscous stress tensor.Secondly,the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure.Thirdly,under the competition between the temperature gradients and the contact area of the two fluids,the average intensity of the non-equilibrium quantity related to the heat flux shows diversity,and the influence of the specific heat ratio is also quite remarkable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12293000,12293003,12293004,12122214,12202291 and 12272382)the Youth Innovation Promotion Association CAS(Grant No.2022019).
文摘When it is generated in extreme vicinity to a water surface,an oscillating bubble bursts into the atmosphere and high-pressure gas is simultaneously exhausted from it,forming a splash sheet and an open cavity.The dynamics of the splash sheet induced by the bursting of the oscillating bubble has drawn increasing attention,but it is not clearly understood.We conduct a numerical simulation in the framework of open-source software OpenFOAM.The volume of fluid and Reynolds-Averaged Navier-Stokes methods are used to precisely capture the gas-liquid interface and obtain flow structure,respectively.In addition,an experimental setup is carried out based on an object distance compensation method for validation of the numerical model.Two patterns are summarized:(1)An open splash,(2)A sealed splash depending on whether a splash sheet completely closes.Detailed numerical results shows that the bubble bursting is induced by the Rayleigh-Taylor instability.Finally,the splash closures are discussed for two patterns.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275031,11675026,11475032,11475034,11575033,and 11274026)the Foundation of President of Chinese Academy of Engineering Physics(Grant No.2014-1-040)the National Basic Research Program of China(Grant No.2013CB834100)
文摘Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, severa
基金The project supported by the National Natural Science Foundation of China (Nos. 10035020 and 40390150)
文摘The assembling stabilizing effect of the finite Larmor radius (FLR) and the sheared axial flow (SAF) on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible finite Larmor radius magnetohydrodynamic (MHD) equations. The finite Larmor radius effects are introduced in the momentum equation with the sheared axial flow through an anisotropic ion stress tensor. In this paper a linear mode equation is derived that is valid for arbitrary kL, where k is the wave number and L is the plasma shell thickness. Numerical solutions are presented. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the individual effect of the finite Larmor radius or the sheared axial flow. The assembling effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability, and the unstable region can be compressed considerably.
文摘A laboratory study of the turbulence front initiated by the Rayleigh-Taylor instabilities was conducted by overturning a two-layer stratified flow in a tank. Dye was introduced to the upper layer and the concentration of the dye was determined using a video imaging method. The mass center of the heavier upper layer moved continuously to a lower elevation because of the intrusion of the heavier fluid into the lower layer and the lighter fluid into the upper layer. The downward movement of the mass center was accurately determined from the dye concentration profile. It is concluded that the initial advancement of the mass center follows a quadratic relation with time and the final advancement obeys a linear relation with time.
文摘Directly driven ablative Rayleigh Taylor (R-T) instability of modulated CH targets was studied using the face- on X-ray radiography on the Shen-Guang II device. We obtained temporal evolution images of the R-T instability perturbation. The RT instability growth factor has been obtained by using the methods of fast Fourier transform and seeking the difference of light intensity between the peak and the valley of the targets. Through comparison with the the theoretical simulation, we found that the experimental data had a good agreement with the theoretical simulation results before 1.8 ns. and was lower than the theoretical simulation results after that.
文摘The linear analysis of the Rayleigh-Taylor instability in metal material is extended from the perfect plastic constitutive model to the Johnson-Cook and Steinberg-Guinan constitutive model, and from the constant loading to a time-dependent loading. The analysis is applied to two Rayleigh-Taylor instability experiments in aluminum and vanadium with peak pressures of 20 GPa and 90 GPa, and strain rates of 6 × 106 s−1 and 3 × 107 s−1 respectively. When the time-dependent loading and the Steinberg-Guinan constitutive model are used in the linear analysis, the analytic results are in close agreement with experiments quantitatively, which indicates that the method in this paper is applicable to the Rayleigh-Taylor instability in aluminum and vanadium metal materials under high pressure and high strain rate. From these linear analyses, we find that the constitutive models and the loading process are of crucial importance in the linear analysis of the Rayleigh-Taylor instability in metal material, and a better understanding of the Rayleigh-Taylor instability in metals is gained. These results will serve as important references for evolving high-pressure, high-strain-rate experiments and numerical simulations.
基金Project supported by the National Natural Science Foundation of China(Nos.41575026 and 41175025)
文摘Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the present paper, the sufficient conditions of R-T stability and instability are preliminarily^derived. Linear equations for small perturbation are first obtained from the electron/ion continuity equations, momentum equations, and the current continuity equation in the equatorial ionosphere. The linear equations can be casted as an eigenvalue equation using a normal mode method. The eigenvalue equation is a variable coefficient linear equation that can be solved using a variational approach. With this approach, the sufficient conditions can be obtained as follows: if the minimum systematic eigenvalue is greater than one, the ionosphere is R-T unstable; while if the maximum systematic eigenvalue is less than one, the ionosphere is R-T stable. An approximate numerical method for obtaining the systematic eigenvalues is introduced, and the R-T stable/unstable areas are calculated. Numerical experiments axe designed to validate the sufficient conditions. The results agree with the derived suf- ficient conditions.
基金This work was supported by the National Natural Science Foundation of China No.10035020.
文摘A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.
基金Supported by the MICS program of the U.S. Department of Energy DE-FG02-90ER25084DE-AC02-98CH10886, the Department of Energy Office of Inertial Fusion, the Army Research Office, grant DAAL-03-91-0027the National Science Foundation, grant DMS-01024
文摘The temporal development of a single mode Rayleigh-Taylor instability consists of three stages: the linear, free fall and terminal velocity regimes. The purpose of this paper is to report on new phenomena observed in the approach to terminal velocity. Our numerical study shows an unexpected nonuniform approach to terminal velocity. The nonuniformity applies especially to the spikes, which are fingers of heavy fluid falling into the light fluid, but it also applies to the rising bubbles of light fluid. For spikes especially, our results call into question the meaningfulness of a terminal velocity for moderate values of the Atwood number A. After a short time period of pseudo-terminal plateau, the spike velocity increases to a significantly higher maximum, followed by a decrease. This phenomena appears to be due to a slow evolution in the shape of the spike and bubble. We find a relation between the spike (bubble) acceleration and the tip curvature. In correlation with an increase in the spike velocity, the main body of the spike becomes narrower and the tip curvature increases. Our numerical results are by the Front Tracking method. The very late time simulations considered here required stabilization by a small value for the viscosity, so that the compressible Navier-Stokes equations govern the dynamics.
文摘Studying the dynamical behaviors of the liquid spike formed by Rayleigh-Taylor instability is important to understand the mechanisms of liquid atomization process. In this paper, based on the information on the velocity and pressure fields obtained by the coupled-level-set and volume-of- fluid (CLSVOF) method, we describe how a freed spike can be formed from a liquid layer under falling at a large Atwood number. At the initial stage when the surface deformation is small, the amplitude of the surface deformation increases exponentially. Nonlinear effect becomes dominant when the amplitude of the surface deformation is comparable with the surface wavelength (~0.1λ). The maximum pressure point, which results from the impinging flow at the spike base, is essential to generate a liquid spike. The spike region above the maximum pressure point is dynamically free from the bulk liquid layer below that point. As the descending of the maximum pressure point, the liquid elements enter the freed region and elongate the liquid spike to a finger-like shape.
基金Project supported by the National Natural Science Foundation of China(Grant No.10805041)the Science and Technology on Plasma Physics Laboratory,China(Grant No.9140C6801021001)the Science and Technology Development Foundation of China Academy of Engineering Physics,China(Grant No.2011B0102020)
文摘A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of - 30 ps at the Shen Guang-Ⅲ (SG-Ⅲ) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion.
基金We thank Dr. Z. F. Zhang and Dr. Q. Zhang for their useful discussions. This work was supported by the9th-Five-Year Climb Project of MST, the NSAF Project, the China Postdoctoral Science Foundation and CAS, and K. C. Wong Postdoctoral Research Award Fu
文摘The 3-dimensional incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation ( LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinusoidal perturbation and random perturbation are simulated. A full treatment of the whole evolution process of the instability is addressed. To verify the reliability of the LES code, the averaged turbulent energy as well as the flux of passive scalar are calculated at both the resolved scale and the subgrid scale. Our results show good agreement with the experimental and other numerical work. The LES method has proved to be an effective approach to the Rayleigh-Taylor instability.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11371065, 11126134, 11401033, 91130002 and 91330205)the China Academy of Engineering Physics Project (Grant Nos.2012A0202010 and 2015B0202035)+2 种基金the National High Technology Research and Development Program of China (Grant No. 2012AA01A303)the Foundation of Science and Technology Computation Physics Laboratorythe National Hi-Tech Inertial Confinement Fusion Committee of China
文摘In this paper, we introduce a multi-material arbitrary Lagrangian and Eulerian method for the hydrodynamic radiative multi-group diffusion model in 2D cylindrical coordinates. The basic idea in the construction of the method is the following: In the Lagrangian step, a closure model of radiation-hydrodynamics is used to give the states of equations for materials in mixed cells. In the mesh rezoning step, we couple the rezoning principle with the Lagrangian interface tracking method and an Eulerian interface capturing scheme to compute interfaces sharply according to their deformation and to keep cells in good geometric quality. In the interface reconstruction step, a dual-material Moment-of-Fluid method is introduced to obtain the unique interface in mixed ceils. In the remapping step, a conservative remapping algorithm of conserved quantities is presented. A munber of numerical tests are carried out and the numerical results show that the new method can simulate instabilities in complex fluid field under large deformation, and are accurate and robust.