In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positi...In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positive periodic solutions of this model.展开更多
This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions fo...This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.展开更多
In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation a...In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation and flip bifurcation by using bifurcation theory and the method of approximation by a flow. Numerical simulations are presented not only to demonstrate the consistence with our theoretical analyses, but also to exhibit the complex dynamical behaviors, such as the cascade of period-doubling bifurcation in period-2 and the chaotic sets. The Maximum Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. These results show that the direct discrete method has more rich dynamic behaviors than the discrete model obtained by Euler method.展开更多
基金Supported by the National Natural Science Foundation of China (No.19531070)
文摘In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positive periodic solutions of this model.
文摘This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.
基金Supported by National Natural Science Foundation of China (10971229)Doctoral Foundation of Guilin University of Technology (2010)National Research Program of China(2007CB714107)
文摘In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation and flip bifurcation by using bifurcation theory and the method of approximation by a flow. Numerical simulations are presented not only to demonstrate the consistence with our theoretical analyses, but also to exhibit the complex dynamical behaviors, such as the cascade of period-doubling bifurcation in period-2 and the chaotic sets. The Maximum Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. These results show that the direct discrete method has more rich dynamic behaviors than the discrete model obtained by Euler method.