期刊文献+

一类基于比率的捕食-食饵系统的全局稳定性分析 被引量:4

Global Stability Analysis of a Ratio-Dependent Predator-Prey System
下载PDF
导出
摘要 研究一类基于比率和具第Ⅲ类功能性反应的捕食-食饵系统.通过分析正平衡点的局部稳定性给出了系统正平衡点全局渐近稳定以及系统存在极限环的条件.运用Hopf分支理论讨论了当正平衡点是非双曲型时的情形. A ratio dependent predator-prey system with HoUing type Ⅲ functional response was considered. The sufficient condition of the global asymptotic stability for the positive equilibrium and the existence of the limit cycle were given by studying the locally asymptotic stability of the positive equilibrium. At last, the condition when the positive equilibrium is no hyperbolic equilibrium was discussed by Hopf bifurcation.
出处 《应用数学和力学》 EI CSCD 北大核心 2008年第4期447-452,共6页 Applied Mathematics and Mechanics
关键词 比率 全局渐近稳定 功能性反应 HOPF分支 ratio-dependent global asymptotic stability functional response Hopf bifurcation
  • 相关文献

参考文献8

  • 1Berezovskaya F, Karev G, Arditi R. Parametric analysis of the ratio-dependent predator-prey model[J]. J Math Biol, 2001, 43 ( 3 ) :221-246. 被引量:1
  • 2XIAO Dong-mei, RUAN Sbi-gui. Global dynamics of a ratio-dependent predator-prey system[ J ]. J Math Biol,2001,43(3) :268-290. 被引量:1
  • 3Kuang Y, Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol, 1998,36(4) :389-405. 被引量:1
  • 4Hsu S-B,Hwang T-W, Kuaag Y. Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system[J]. J Math Biol,2001,43(4) :221-246. 被引量:1
  • 5王琳琳.自治HollingⅢ类功能性反应的捕食-食饵系统的定性分析[J].西北师范大学学报(自然科学版),2005,41(1):1-6. 被引量:10
  • 6鲁铁军,王美娟,刘妍.一类基于比率的捕食-食饵系统的参数分析[J].数学的实践与认识,2007,37(17):98-104. 被引量:1
  • 7Perko L. Differential Equations and Dynamical Systems[ M] .2nd Ed. Texts in Applied Mathematics 7. Moscow: Springer-Verlag, 1996,344. 被引量:1
  • 8Guckenheimer J, Holmes P. Nonlinear Oscillation, Dgnamical Systems and Bifurcations of Vector Fields [ M ]. New York: Springer- Verlag, 1980. 被引量:1

二级参考文献25

  • 1王琳琳.自治HollingⅢ类功能性反应的捕食-食饵系统的定性分析[J].西北师范大学学报(自然科学版),2005,41(1):1-6. 被引量:10
  • 2Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation[J].Mem Ent Sec Can, 1965, 45: 1-60. 被引量:1
  • 3Berryman A A. The origins and evolution of predator-prey theory[J]. Ecology, 1992, 75: 1530-1535. 被引量:1
  • 4Rosenzweig M L. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time[J]. Science, 1969, 171: 385-387. 被引量:1
  • 5Rosenzweig M L, MacArthur R. Graphical representation and stability conditions of predator-prey interactions[J].AmerNat, 1963, 97: 209-223. 被引量:1
  • 6Arditi R, Ginzburg L R. Coupling in predator-prey dynamics, Ratio-dependence[J]. J Theo Biol, 1989, 139: 311-326. 被引量:1
  • 7Freedman H I. Deterministic Mathematical Models in Population Ecology[M]. New York: Marcel Dekker, 1980. 被引量:1
  • 8Berryman A A. The origins and evolution of predator-prey theory[J]. Ecology, 1992, 75: 1530-1535. 被引量:1
  • 9Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation[J].MemEnt Sec Can, 1965, 45: 1--60. 被引量:1
  • 10May R M. Time delay versus stability in population models with two and three trophic levels[J]. Ecology, 1973, 45315-325. 被引量:1

共引文献9

同被引文献28

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部