The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microsco...The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical test. The results show that with decreasing the quenching rate, the size and inter-particle distance of the grain boundary precipitates as well as precipitation free zone width increase, but the copper content of grain boundary precipitates decreases. The SCC resistance of the samples increases first and then decreases, which is attributed to the copper content, size and distribution of grain boundary precipitates.展开更多
利用热变形和两步淬火配分(quenching and partitioning,Q&P)工艺的复合作用制备低碳合金钢试样,设计不同的热变形温度,研究加载(获得30%变形量)引起的应力和塑性变形对Q&P工艺下马氏体相变开始温度(Ms),残余奥氏体含量和力学...利用热变形和两步淬火配分(quenching and partitioning,Q&P)工艺的复合作用制备低碳合金钢试样,设计不同的热变形温度,研究加载(获得30%变形量)引起的应力和塑性变形对Q&P工艺下马氏体相变开始温度(Ms),残余奥氏体含量和力学性能的影响.结果表明,与传统两步Q&P工艺相比,复合作用下显微组织细化,尤其是随着变形温度的降低细化更明显,马氏体板条呈现弯曲形貌.随着变形温度升高,Ms升高,但马氏体转变量却有所下降,其原因是应力引起的位错多在奥氏体母相晶界处出现,成为马氏体相变优先形核的位置,而一旦发生相变,一定的塑性应变将提高晶内奥氏体的稳定性,从而促进残余奥氏体含量增加.复合作用下试样的力学性能也有所提高,在650℃变形时试样的硬度最高,而在750℃变形时试样的塑性最好.展开更多
Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short ti...Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given.展开更多
The carburizing process of the gear ring was simulated by taking into account the practical carburizing and quenching techniques of the gear ring and by solving the diffusion equation. The carbon content distribution ...The carburizing process of the gear ring was simulated by taking into account the practical carburizing and quenching techniques of the gear ring and by solving the diffusion equation. The carbon content distribution in the carburized layer was obtained. Based on the results, the quenching process of the gear ring was then simulated using the metallic thermodynamics and FEM: it was found that the carburization remarkably affects the quenching process. Microstructures and stress distributions of the gear ring in the quenching process were simulated, and the results are confirmed by experiments.展开更多
基金Projects (2010CB731701, 2012CB619502) supported by National Basic Research Program of ChinaProject (51021063) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical test. The results show that with decreasing the quenching rate, the size and inter-particle distance of the grain boundary precipitates as well as precipitation free zone width increase, but the copper content of grain boundary precipitates decreases. The SCC resistance of the samples increases first and then decreases, which is attributed to the copper content, size and distribution of grain boundary precipitates.
文摘利用热变形和两步淬火配分(quenching and partitioning,Q&P)工艺的复合作用制备低碳合金钢试样,设计不同的热变形温度,研究加载(获得30%变形量)引起的应力和塑性变形对Q&P工艺下马氏体相变开始温度(Ms),残余奥氏体含量和力学性能的影响.结果表明,与传统两步Q&P工艺相比,复合作用下显微组织细化,尤其是随着变形温度的降低细化更明显,马氏体板条呈现弯曲形貌.随着变形温度升高,Ms升高,但马氏体转变量却有所下降,其原因是应力引起的位错多在奥氏体母相晶界处出现,成为马氏体相变优先形核的位置,而一旦发生相变,一定的塑性应变将提高晶内奥氏体的稳定性,从而促进残余奥氏体含量增加.复合作用下试样的力学性能也有所提高,在650℃变形时试样的硬度最高,而在750℃变形时试样的塑性最好.
文摘Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given.
基金Item Sponsored by National Basic Research Programof China (G2000067208-4)
文摘The carburizing process of the gear ring was simulated by taking into account the practical carburizing and quenching techniques of the gear ring and by solving the diffusion equation. The carbon content distribution in the carburized layer was obtained. Based on the results, the quenching process of the gear ring was then simulated using the metallic thermodynamics and FEM: it was found that the carburization remarkably affects the quenching process. Microstructures and stress distributions of the gear ring in the quenching process were simulated, and the results are confirmed by experiments.