Electro-hydrostatic actuator (EHA) pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies c...Electro-hydrostatic actuator (EHA) pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies cannot be ignored when analyzing the cylinder block balance. A large tilting inertia moment will make the cylinder block tilt away from the valve plate, resulting in severe wear and significantly increased leakage. This paper presents an analytical expression for the tilting inertia moment on the cylinder block by means of vector analysis. In addition, a high-speed test rig was built up, and experiments on an EHA pump prototype were carried out at high speeds of up to 10,000 r/min. The predicted nature of the cylinder block tilt at high speeds corresponds closely to the witness marks on the dismantled EHA pump prototype, It is suggested that more attention should be given to the tilting inertia moment acting on the cylinder block of an EHA pump since both wear and leakage flow between the cylinder block and the valve plate are very much dependent on this tilting moment.展开更多
Due to the lack of understanding in the flow mechanism of the hub plate crown, the current calculation of the disc friction loss and the axial thrust in the centrifugal pump often uses empirical formulas. Research on ...Due to the lack of understanding in the flow mechanism of the hub plate crown, the current calculation of the disc friction loss and the axial thrust in the centrifugal pump often uses empirical formulas. Research on the flow characteristics of the hub plate crown is of practical significance. The shroud and hub cavities are respectively studied with regard to tangential and radial velocities at the four different angular positions(0°, 90°, 180°, and 270°) at the four different operational points(0.6 Qsp, 0.8 Qsp, 1.0 Qsp, and 1.2 Qsp). Results indicate that at the same operational point, the smaller the volute chamber sectional area is, the higher the tangential velocity of the fluid core zone of the shroud cavity is. Radial leakage flow from the volute to the seal ring at the same operational point appears in 0° and 90° direction;when the flow is large, the tangential and radial velocities of the shroud and hub cavities with the same radius tend to be equal with axial symmetry. The axial leakage flow through the balance holes significantly affects the radial distribution of both tangential and radial velocities of fluid flow in the hub cavity. The numerical calculation results of fluid leakage through the clearance of back sealing ring are in good agreement with the test results. Accordingly, the magnitude of leakage is closely related to the fluid pressure and velocity distribution in the hub plate crown of the centrifugal pump. The analysis of the flow characteristics in the hub plate crown of the centrifugal pump could reveal the cause of the disc friction loss from the mechanism, providing a significant guidance for improving the accuracy of calculation and balancing the axial thrust in the centrifugal pump.展开更多
基金the National Basic Research Program of China(No.2014CB046403)the National Natural Science Foundation of China(No.U1509204)for their financial supports
文摘Electro-hydrostatic actuator (EHA) pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies cannot be ignored when analyzing the cylinder block balance. A large tilting inertia moment will make the cylinder block tilt away from the valve plate, resulting in severe wear and significantly increased leakage. This paper presents an analytical expression for the tilting inertia moment on the cylinder block by means of vector analysis. In addition, a high-speed test rig was built up, and experiments on an EHA pump prototype were carried out at high speeds of up to 10,000 r/min. The predicted nature of the cylinder block tilt at high speeds corresponds closely to the witness marks on the dismantled EHA pump prototype, It is suggested that more attention should be given to the tilting inertia moment acting on the cylinder block of an EHA pump since both wear and leakage flow between the cylinder block and the valve plate are very much dependent on this tilting moment.
基金Supported by National Natural Science Foundation of China(Grant Nos.51576162,51236006)
文摘Due to the lack of understanding in the flow mechanism of the hub plate crown, the current calculation of the disc friction loss and the axial thrust in the centrifugal pump often uses empirical formulas. Research on the flow characteristics of the hub plate crown is of practical significance. The shroud and hub cavities are respectively studied with regard to tangential and radial velocities at the four different angular positions(0°, 90°, 180°, and 270°) at the four different operational points(0.6 Qsp, 0.8 Qsp, 1.0 Qsp, and 1.2 Qsp). Results indicate that at the same operational point, the smaller the volute chamber sectional area is, the higher the tangential velocity of the fluid core zone of the shroud cavity is. Radial leakage flow from the volute to the seal ring at the same operational point appears in 0° and 90° direction;when the flow is large, the tangential and radial velocities of the shroud and hub cavities with the same radius tend to be equal with axial symmetry. The axial leakage flow through the balance holes significantly affects the radial distribution of both tangential and radial velocities of fluid flow in the hub cavity. The numerical calculation results of fluid leakage through the clearance of back sealing ring are in good agreement with the test results. Accordingly, the magnitude of leakage is closely related to the fluid pressure and velocity distribution in the hub plate crown of the centrifugal pump. The analysis of the flow characteristics in the hub plate crown of the centrifugal pump could reveal the cause of the disc friction loss from the mechanism, providing a significant guidance for improving the accuracy of calculation and balancing the axial thrust in the centrifugal pump.