The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is es...The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is essential for its life cycle.3CL^pro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CL^pro sequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.展开更多
The actin cytoskeleton plays a role in mobility of many different organelles in plant cells, including chloroplasts, mitochondria, Golgi, and peroxisomes. While progress has been made in identifying the myosin motors ...The actin cytoskeleton plays a role in mobility of many different organelles in plant cells, including chloroplasts, mitochondria, Golgi, and peroxisomes. While progress has been made in identifying the myosin motors involved in trafficking of various plant organelles, not all of the cargoes mobilized by different members of the myosin XI family have yet been identified. The involvement of myosins in chloroplast positioning and mitochondrial movement was demonstrated by expression of a virus-induced gene silencing (VIGS) construct in tobacco. When VIGS with two different conserved sequences from a myosin Xl motor was performed in plants with either GFP-labeled plastids or mitochondria, chloroplast positioning in the dark was abnormal, and mitochondrial movement ceased. Because these and prior obser- vations have implicated a role for myosins and the actin cytoskeleton in plastid and stromule movement, we searched for myosin tail domains that could associate with plastids and stromules. While a yellow fluorescent protein (YFP) fusion with the entire tail region of myosin XI-F was usually found only in the cytoplasm, we observed that an Arabidopsis or Nicotiana benthamiana YFP::myosin XI-F tail domain homologous to the yeast myo2p vacuole-binding domain associated with plastids and stromules after transient expression in N. benthamiana. Taken together, these observations implicate myosin motor proteins in dynamics of plastids and stromules.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of the展开更多
Biomaterial surface chemistry engenders profound consequences on cell adhesion and the ultimate tissue response by adsorbing proteins from extracellular matrix,where vitronectin(Vn)is involved as one of the crucial me...Biomaterial surface chemistry engenders profound consequences on cell adhesion and the ultimate tissue response by adsorbing proteins from extracellular matrix,where vitronectin(Vn)is involved as one of the crucial mediator proteins.Deciphering the adsorption behaviors of Vn in molecular scale provides a useful account of how to design biomaterial surfaces.But the details of structural dynamics and consequential biological effect remain elusive.Herein,both experimental and computational approaches were applied to delineate the conformational and orientational evolution of Vn during adsorption onto self-assembled monolayers(SAMs)terminating with-COOH,-NH2,-CH3 and-OH.To unravel the interplay between cell binding and the charge and wettability of material surface,somatomedin-B(SMB)domain of Vn holding the RGD cell-binding motif was employed in molecular dynamics(MD)simulations,with orientation initialized by Monte Carlo(MC)method.Experimental evidences including protein adsorption,cell adhesion and integrin gene expressions were thoroughly investigated.The adsorption of Vn on different surface chemistries showed very complex profiles.Cell adhesion was enabled on all Vn-adsorbed surfaces but with distinct mechanisms mostly determined by conformational change induced reorientation.Higher amount of Vn was observed on negatively charged surface(COOH)and hydrophobic surface(CH3).However,advantageous orientations defined by RGD loop conditions were only obtained on the charged surfaces(COOH and NH2).Specifically,COOH surface straightened up the Vn molecules and accumulated them into a higher density,whereas CH3 surface squashed Vn and stacked them into higher density multilayer by tracking adsorption but with the RGD loops restrained.These findings may have a broad implication on the understanding of Vn functionality and would help develop new strategies for designing advanced biomaterials.展开更多
基金This work was supported by the National Key Research and Development Program of China(2020YFC0845600)the Hubei Provincial Natural Science Foundation of China(2019CFA014)+1 种基金the Starting Research Grant for High-level Talents from Guangxi University,Nanning,ChinaPostdoctoral Research Platform Grant of Guangxi University,Nanning,China.
文摘The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is essential for its life cycle.3CL^pro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CL^pro sequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.
文摘The actin cytoskeleton plays a role in mobility of many different organelles in plant cells, including chloroplasts, mitochondria, Golgi, and peroxisomes. While progress has been made in identifying the myosin motors involved in trafficking of various plant organelles, not all of the cargoes mobilized by different members of the myosin XI family have yet been identified. The involvement of myosins in chloroplast positioning and mitochondrial movement was demonstrated by expression of a virus-induced gene silencing (VIGS) construct in tobacco. When VIGS with two different conserved sequences from a myosin Xl motor was performed in plants with either GFP-labeled plastids or mitochondria, chloroplast positioning in the dark was abnormal, and mitochondrial movement ceased. Because these and prior obser- vations have implicated a role for myosins and the actin cytoskeleton in plastid and stromule movement, we searched for myosin tail domains that could associate with plastids and stromules. While a yellow fluorescent protein (YFP) fusion with the entire tail region of myosin XI-F was usually found only in the cytoplasm, we observed that an Arabidopsis or Nicotiana benthamiana YFP::myosin XI-F tail domain homologous to the yeast myo2p vacuole-binding domain associated with plastids and stromules after transient expression in N. benthamiana. Taken together, these observations implicate myosin motor proteins in dynamics of plastids and stromules.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of the
基金financially supported by the National Key R&D Program of China(2017YFC1105000)Science and Technology Planning Project of Guangdong Province(2017B030314008)+5 种基金National Natural Science Foundation of China(51572087,31700823)Shenzhen Science and Technology Innovation Committee(JCYJ20170818160503855)Outstanding Scholar Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(2018GZR110102001)GDST-NWO science industry cooperation programme Chemistry(2018A050501006)Natural Science Foundation of Guangdong Province of China(2020A1515011354)the 111 Project(B13039).
文摘Biomaterial surface chemistry engenders profound consequences on cell adhesion and the ultimate tissue response by adsorbing proteins from extracellular matrix,where vitronectin(Vn)is involved as one of the crucial mediator proteins.Deciphering the adsorption behaviors of Vn in molecular scale provides a useful account of how to design biomaterial surfaces.But the details of structural dynamics and consequential biological effect remain elusive.Herein,both experimental and computational approaches were applied to delineate the conformational and orientational evolution of Vn during adsorption onto self-assembled monolayers(SAMs)terminating with-COOH,-NH2,-CH3 and-OH.To unravel the interplay between cell binding and the charge and wettability of material surface,somatomedin-B(SMB)domain of Vn holding the RGD cell-binding motif was employed in molecular dynamics(MD)simulations,with orientation initialized by Monte Carlo(MC)method.Experimental evidences including protein adsorption,cell adhesion and integrin gene expressions were thoroughly investigated.The adsorption of Vn on different surface chemistries showed very complex profiles.Cell adhesion was enabled on all Vn-adsorbed surfaces but with distinct mechanisms mostly determined by conformational change induced reorientation.Higher amount of Vn was observed on negatively charged surface(COOH)and hydrophobic surface(CH3).However,advantageous orientations defined by RGD loop conditions were only obtained on the charged surfaces(COOH and NH2).Specifically,COOH surface straightened up the Vn molecules and accumulated them into a higher density,whereas CH3 surface squashed Vn and stacked them into higher density multilayer by tracking adsorption but with the RGD loops restrained.These findings may have a broad implication on the understanding of Vn functionality and would help develop new strategies for designing advanced biomaterials.