本文首先比较详细地介绍了美国会展管理专业的教育模式,具体包括美国会展管理专业的教育层次、学科体系、课程设置及其特点,重点以在会展管理教育方面卓有成效的美国乔治华盛顿大学(The George Washington University,Washington DC,USA...本文首先比较详细地介绍了美国会展管理专业的教育模式,具体包括美国会展管理专业的教育层次、学科体系、课程设置及其特点,重点以在会展管理教育方面卓有成效的美国乔治华盛顿大学(The George Washington University,Washington DC,USA)和美国内华达大学(University of Nevada,Las Vegas,USA)为例具体说明和解释,接下来在分析我国会展管理教育现状及存在问题的基础上,就如何调整我国会展管理教育体系以便进一步与国际接轨提出一些策略建议。展开更多
Abandoned mines are of high potential risk as they could be a large underground storage of pollutants(heavy metals and organic wastes, etc.). Various physical, chemical and biological reactions would take place when g...Abandoned mines are of high potential risk as they could be a large underground storage of pollutants(heavy metals and organic wastes, etc.). Various physical, chemical and biological reactions would take place when groundwater flows into underground spaces, which makes abandoned mine a huge potential hazard to groundwater environment. The recovery of groundwater level is one of the key elements controlling the reactions and causing such hazards. This paper simulated groundwater level recovery processes in the abandoned mines, Fengfeng coalfield by using the computer program FEFLOW. The paper integrated the pipe flow model, "three zones" model and groundwater inrush(discharge) model in the simulation of groundwater in the complex laneway-aquifer system. Groundwater flow in the laneway systems was considered pipe flow and described in Bernoulli equation. The water-bearing medium(coal seam roof) overlying the laneway systems was divided into "three zones" composed of the caving zone, fissure zone and bending zone based on the disruption degrees of previous mining. Groundwater in the Ordovician limestone aquifer(bottom of coal seam) flowing into laneway systems was considered a major inrush/recharge source, and its flow rate was calculated by an inrush(discharge) model which was newly developed in this study and incorporated into FEFLOW. The results showed that it would take approximately 95 days for groundwater in abandoned mines to recover to regional groundwater level elevation, and the total amount of water filling up would be about 1.41195×10~7 m^3, which is consistent with the actual data. The study could be of theoretical and practical significance to mitigate abandoned mines' hazards and improve mine groundwater utilization.展开更多
文摘本文首先比较详细地介绍了美国会展管理专业的教育模式,具体包括美国会展管理专业的教育层次、学科体系、课程设置及其特点,重点以在会展管理教育方面卓有成效的美国乔治华盛顿大学(The George Washington University,Washington DC,USA)和美国内华达大学(University of Nevada,Las Vegas,USA)为例具体说明和解释,接下来在分析我国会展管理教育现状及存在问题的基础上,就如何调整我国会展管理教育体系以便进一步与国际接轨提出一些策略建议。
基金supported by the National Natural Science Foundation of China under grants No. 41272269
文摘Abandoned mines are of high potential risk as they could be a large underground storage of pollutants(heavy metals and organic wastes, etc.). Various physical, chemical and biological reactions would take place when groundwater flows into underground spaces, which makes abandoned mine a huge potential hazard to groundwater environment. The recovery of groundwater level is one of the key elements controlling the reactions and causing such hazards. This paper simulated groundwater level recovery processes in the abandoned mines, Fengfeng coalfield by using the computer program FEFLOW. The paper integrated the pipe flow model, "three zones" model and groundwater inrush(discharge) model in the simulation of groundwater in the complex laneway-aquifer system. Groundwater flow in the laneway systems was considered pipe flow and described in Bernoulli equation. The water-bearing medium(coal seam roof) overlying the laneway systems was divided into "three zones" composed of the caving zone, fissure zone and bending zone based on the disruption degrees of previous mining. Groundwater in the Ordovician limestone aquifer(bottom of coal seam) flowing into laneway systems was considered a major inrush/recharge source, and its flow rate was calculated by an inrush(discharge) model which was newly developed in this study and incorporated into FEFLOW. The results showed that it would take approximately 95 days for groundwater in abandoned mines to recover to regional groundwater level elevation, and the total amount of water filling up would be about 1.41195×10~7 m^3, which is consistent with the actual data. The study could be of theoretical and practical significance to mitigate abandoned mines' hazards and improve mine groundwater utilization.