In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theo...In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges.展开更多
Water-conserving mining is an effective way to alleviate the contradiction between fragile ecological environment and high-intensity coal mining in the arid and semi-arid region of northwest China. It needs to conside...Water-conserving mining is an effective way to alleviate the contradiction between fragile ecological environment and high-intensity coal mining in the arid and semi-arid region of northwest China. It needs to consider the engineering and geological conditions, hydrogeological conditions and mining methods of coal seams. From the three aspects, this paper systematically analyzes the influencing factors and establishes an identification model with multi-level structures. The model includes three primary factors (including the engineering and geological conditions, hydrogeological conditions and mining methods), nine secondary factors (including overlying strata thickness, aquiclude, mining parameters and etc.), sixteen third-tier factors (including the faults, aquiclude thickness and effective mining height and etc.) and twelve fourth-tier factors (including the fault throw exp on ent, aquiclude permeability and coal pillar sizes and etc.). On the basis, the analytic hierarchy process is used to build the judgment matrix and obtain the weight of each influencing factor. The results indicate that the overlying strata thickness, aquiclude and effective mining height are the most import a nt factors among the primary factors of engineering and geological conditions, hydrogeological conditions and mining methods, respectively. The research results could provide theoretical references for the water-conserving mining of coal resources in northwest China.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
基金Specialized Research Fund for the Doctoral Programof Higher Education (No20050213008)the Scientific and TechnicalPlan Item of Communications Department of Heilongjiang Province ofChina (2004)
文摘In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges.
基金the National Key Basic Research Program of China (973 Program)(grant number 2015CB251600)the National Natural Science Foundation of China (51874280)+1 种基金the Open Project of Key Laboratory of Mine Geological Hazards Mechanism and Control (grant number KF2017-02)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Water-conserving mining is an effective way to alleviate the contradiction between fragile ecological environment and high-intensity coal mining in the arid and semi-arid region of northwest China. It needs to consider the engineering and geological conditions, hydrogeological conditions and mining methods of coal seams. From the three aspects, this paper systematically analyzes the influencing factors and establishes an identification model with multi-level structures. The model includes three primary factors (including the engineering and geological conditions, hydrogeological conditions and mining methods), nine secondary factors (including overlying strata thickness, aquiclude, mining parameters and etc.), sixteen third-tier factors (including the faults, aquiclude thickness and effective mining height and etc.) and twelve fourth-tier factors (including the fault throw exp on ent, aquiclude permeability and coal pillar sizes and etc.). On the basis, the analytic hierarchy process is used to build the judgment matrix and obtain the weight of each influencing factor. The results indicate that the overlying strata thickness, aquiclude and effective mining height are the most import a nt factors among the primary factors of engineering and geological conditions, hydrogeological conditions and mining methods, respectively. The research results could provide theoretical references for the water-conserving mining of coal resources in northwest China.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.